
 Overview of the Build Process

This guide describes how to build 32-bit applications for Windows and dynamic-link libraries (DLLs)
using the Microsoft Win32 Software Development Kit (SDK). It describes the components of a
generalized makefile and includes information on using the C run-time libraries.

The following table summarizes the steps used to build a Win32 application or DLL:

Steps to Building Applications
Step Tool
1. Compile C and C++ source-
language files into object files.

C/C++ compiler (CL)

2. Create and edit resources. Doing
so may also create include (.H) files
which define useful constants.

Dialog Editor, Image Editor, and
Font Editor (DLGEDIT, IMAGEDIT,
and FONTEDIT)

3. Compile resource scripts to
linkable resource files.

Resource Compiler (RC)

4. Compile the module-definition file
for each DLL to an import library and
export library.

Library manager (LIB)

5. Link the object modules,
resources, standard libraries, and
import libraries (for an application
using DLLs) or export library (for a
DLL) to produce an application.

Linker (LINK)

6. Use the appropriate switches to
build a debugging version of the
application or DLL.

Linker switches: /debug:full,
/debugtype:cv

If you are familiar with the process of building applications and DLLs for Windows 3.x, you will notice
some differences. The following parts of the build process are new or different with Win32:

· Resources are linked along with object modules and libraries. You do not need to run the resource
compiler to add resources to the executable file.

· When building a DLL, create an import library from a .DEF file, then link the DLL with the import
library. The linker does not accept a .DEF file when resolving imports.

· When linking a DLL, you must specify the name of the initialization routine using the linker /ENTRY
option. This is the result of the new DLL initialization and termination model in Win32.

· You link a DLL with an export library (.EXP file). The export library is generated by LIB at the same
time it generates the import library from the .DEF file.

The sample makefiles provided with the SDK samples give good examples of the build process. Each
of them includes WIN32.MAK, which defines most of the common macros you need to build 32-bit
applications for Windows NT and Windows 95. For information on source code considerations in
porting your code from 16- to 32-bits, see the following topics:

Porting 16-Bit Code to 32-Bit Windows
Handling Messages with Portable Macros
Writing Portable C Programs
WINDOWS.H and STRICT Type Checking

 Using WIN32.MAK

It is recommended that you examine the contents of WIN32.MAK, located in the \MSTOOLS\H
subdirectory. There are macros defined in this makefile template that can be used to simplify your own
makefiles and to ensure that they are properly built to avoid conflicts.

For example, WIN32.MAK includes the following macros to simplify compilation:

· $(CVARSDLL)
This macro is used for DLLs (single-threaded or multi-threaded). It expands to the following flags:
-DWIN32 -D_WIN32 -DNULL=0 -D_MT -D_DLL

· $(CVARS)
This macro is used for single-threaded executables. It expands to the following flags:
-DWIN32 -D_WIN32 -DNULL=0

WIN32.MAK also includes macros to simplify linking, among which are the following:

· $(CONLIBSDLL)
This macro is for console DLLs using CRTDLL.LIB. It expands to the following list of libraries:
CRTDLL.LIB KERNEL32.LIB ADVAPI32.LIB

· $(GUILIBSDLL)
This macro is used for GUI DLLs using CRTDLL.LIB. It expands to the following list of libraries:
CRTDLL.LIB KERNEL32.LIB ADVAPI32.LIB USER32.LIB GDI32.LIB \
COMDLG32.LIB WINSPOOL.LIB

 Building Applications

In the following example, the object files and libraries are linked to produce the application executable
file. Note that the resource file (*.res) is linked along with the object files.

The following is a simple example of a linker command line (used in an inline response file):

Build an executable (.exe) file
$(TARGET).exe : $(OBJS) $(TARGET).res

$(LINK) @<<
/out:$(TARGET).exe
/debug:notmapped,full
/debugtype:cv
/machine:$(CPU)
/subsystem:windows
$(LINK_FLAGS)
$(OBJS)
$(TARGET).res
$(LIBS)
<<

 Building DLLs

The following example illustrates how to create the import and export libraries for a DLL. The import
library is linked with the application that uses this DLL. The export library is linked with the DLL. The
export library is not explicitly listed in the command because the library tool automatically generates it
along with the import library.

Generate import library (.lib) and export library (.exp)
from a module-definition (.def) file for a DLL
$(TARGET).lib $(TARGET).exp : $(TARGET).def

$(IMPLIB) /out:$(TARGET).lib /machine:$(CPU)
/def:$(TARGET).def

The following example links the DLL. The /DLL and /ENTRY options are required to build a DLL. The
/DLL option specifies that the output file is a DLL. The /ENTRY option specifies the name of the DLL
initialization routine.

Build DLL using objects and export library
$(TARGET).dll : $(OBJS) $(TARGET).exp

$(LINK) @<<
/out:$(TARGET).dll
/dll
-entry:_DllMainCRTStartup$(DLLENTRY)
/debug:full
/debugtype:cv
/machine:$(CPU)
/subsystem:windows
$(LFLAGS)
$(OBJS)
$(TARGET).exp
$(CONLIBSDLL)
<<

The WIN32.MAK file supplied in \MSTOOLS\H will help simplify the build process. The compiler and
linker switches shown in the above examples are defined as macros in this file.

 Using the C Run-Time Library

This guide describes how to use the different forms of the C run-time libraries when building your 32-bit
application. It also describes how to specify the entry point when linking a DLL with the run-time
libraries.

With the original Win32 SDK, three forms of the C run-time library were provided:

LIBC.LIB
Statically linked library for single-threaded applications.

LIBCMT.LIB
Statically linked library that supports multi-threaded applications.

CRTDLL.LIB
Import library for CRTDLL.DLL (the C run-time DLL) that also supports multi-threaded applications.

The C run-time library is not intrinsic to the Win32 SDK, however. These libraries should come from the
same source as the compiler. For new computer architectures, the Win32 SDK typically provided the
compiler and C run-time libraries until there were other offerings available. At that point, the SDK
stopped including these pieces and allowed programmers to choose their favorite vendor.

The names of the libraries may differ from vendor to vendor. These name differences can be
encapsulated in WIN32.MAK. The Microsoft names used in the Visual C++ product are LIBC.LIB,
LIBCMT.LIB, and MSVCRT.DLL.

 Calling the C Run-Time Library from a DLL

When linking a DLL with any of the C run-time libraries, the entry point for the DLL must be the routine
_CRT_INIT, or your initialization code must explicitly call _CRT_INIT every time the DLL entry point is
called.

{ewl msdncd, EWGraphic, group10225 0 /a "SDK.BMP"} To call _CRT_INIT if you do not have
your own DLL entry point

1. Specify _CRT_INIT as the entry point of the DLL.
2. Assuming that you have included WIN32.MAK (which defines the macro DLLENTRY as @12), add

the following option to the DLL's linker command line:
-entry:_CRT_INIT$(DLLENTRY)

{ewl msdncd, EWGraphic, group10225 1 /a "SDK.BMP"} To call _CRT_INIT if you have your
own DLL entry point

1. Add the following code in the entry point, using this prototype for _CRT_INIT:
BOOL WINAPI _CRT_INIT(HINSTANCE hinstDLL, DWORD fdwReason,

LPVOID lpReserved);

For information on _CRT_INIT return values, see DllEntryPoint. This function returns the same
values as _CRT_INIT.

2. On PROCESS_ATTACH and THREAD_ATTACH (see DllEntryPoint for more information on these
flags), call _CRT_INIT at the beginning of the initialization routine, before any C run-time functions
are called or any floating-point operations are performed.

3. Call your own process/thread initialization/termination code.
4. On PROCESS_DETACH and THREAD_DETACH, call _CRT_INIT near the end of the initialization

routine, after all C run-time functions are called and all floating-point operations are completed.

Be sure to pass all of the parameters of the entry point to _CRT_INIT. Because _CRT_INIT expects
these parameters, your application may not work reliably if they are omitted (in particular, fdwReason is
required to determine whether process initialization or termination is needed).

The following is a sample entry point function that shows how and when to make these calls to
_CRT_INIT in the DLL entry point:

BOOL WINAPI DllEntryPoint(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID
lpReserved)
{

// Initialize the C run-time before calling any of your code.
if(fdwReason == DLL_PROCESS_ATTACH || fdwReason ==
DLL_THREAD_ATTACH)

if(!_CRT_INIT(hinstDLL, fdwReason, lpReserved))
return(FALSE);

// Place your DLL's initialization/termination code here. If you
// are porting from 16-bits and have an existing LibMain routine,
// you can call it here. For example:

// if(fdwReason == DLL_PROCESS_ATTACH)
// LibMain();

// Terminate the C run-time after all your code.

if(fdwReason == DLL_PROCESS_DETACH || fdwReason ==
DLL_THREAD_DETACH)

if(!_CRT_INIT(hinstDLL, fdwReason, lpReserved))
return(FALSE);

return(TRUE);

}

For more information, see DllMainCRTStartup.

 DllMainCRTStartup

The complexity involved in initializing the C run-time library from a DLL is cleared up by using the $
(dlllflags) macro in NTWIN32.MAK. It will specify the following switch to the linker:

-entry:_DllMainCRTStattup$(DLLENTRY)

This entry point is exported from the C run-time libraries.

DllMainCRTStartup will call CRT_INIT and it will call the DllMain function exported from your own
DLL. The order of the calls is dependent on whether the process or thread is attaching (in which case
CRT_INIT is called first) or detaching (in which case CRT_INIT is called last).

In summary, export DllMain from your DLL, use the $(dlllflags) macro in the link line of your makefile,
and don't call CRT_INIT explicitly.

 Using Multiple C Run-Time Libraries

If your application makes C run-time library calls and also calls functions contained in a DLL that makes
C run-time library calls, note the following. If the executable and the DLL are both linked with one of the
statically linked C run-time libraries (LIBC.LIB or LIBCMT.LIB), the executable and the DLL will have
separate copies of all C run-time functions and global variables. This means that C run-time data
cannot be shared between the executable and the DLL.

To avoid this problem, link both the executable and the DLL with CRTDLL.LIB. This allows both the
executable and the DLL to use the common set of functions and data contained in CRTDLL.DLL. C
run-time data such as stream handles can then be shared by both the executable and the DLL.

 Mixing Library Types

If your DLL is linked with CRTDLL.LIB, any executables that call your DLL must also be linked with
CRTDLL.LIB. Linking the executable with either LIBC.LIB or LIBCMT.LIB and the DLL with
CRTDLL.LIB can cause unpredictable results. Unless you are sure that the DLL will only be called by
EXEs that are linked with CRTDLL.LIB, you must link the DLL with one of the statically linked C run-
time libraries (LIBC.LIB or LIBCMT.LIB). If you are unsure, you should link the EXE and all DLLs it will
call with CRTDLL.DLL.

If a DLL is linked with LIBC.LIB, and the DLL may be called by a multi-threaded application, multiple
threads running in this DLL at the same time will not be supported. This may cause unpredictable
results. Therefore, if there is a possibility that the DLL will be called by multi-threaded programs, be
sure to link it with one of the libraries that support multi-threaded programs (LIBCMT.LIB or
CRTDLL.LIB).

 Using Calling Conventions

The Intel®-based Windows C/C++ compilers provide several ways to call internal and external
functions. The information in this guide can help you when debugging your program and when
interfacing your code with assembly-language routines.

This guide covers the differences between the calling conventions, how arguments are passed, and
how values are returned by functions.

 Details on Calling Conventions

All arguments are widened to 32 bits when they are passed. Parameters are pushed onto the stack
from right to left. Return values are also widened to 32 bits.

For Intel-based Windows C/C++ compilers, the return value is placed in the EAX register, except for 8-
byte structures, which are returned in the EDX:EAX register pair. Larger structures are returned in the
EAX register as pointers to hidden return structures.

For Intel-based Windows C/C++ compilers, the compiler generates prolog and epilog code to save and
restore the ESI, EDI, EBX, and EBP registers, if they are used in the function.

Note    For information on how to define your own function prolog and epilog code, see Storage Class
Attributes.

 Obsolete Calling Conventions

The __pascal, __fortran, and __syscall calling conventions are no longer supported. Their
functionality can be emulated by using one of the supported calling conventions and appropriate linker
options.

WINDOWS.H now supports the WINAPI macro, which translates to the appropriate calling convention
for the target. Use WINAPI where you previously used PASCAL or __far __pascal.

 Argument Passing and Naming Conventions

The following table lists the calling conventions supported by most Windows C/C++ compilers:

Supported Calling Conventions
Keyword Stack clean-up Argument passing
__ cdecl Caller Pushed on stack
__ stdcall Callee Pushed on stack
__ fastcall Callee Stored in registers, then pushed on

stack
thiscall
(not a
keyword)

Callee Pushed on stack

For an example of these calling conventions, see Example.

 __cdecl

This is the default calling convention for C and C++ programs. Because the stack is cleaned up by the
caller, it can do vararg functions. The __cdecl calling convention creates larger executables than
__stdcall because it requires each function call to include stack clean-up code.

All function arguments are pushed on the stack. In C, the __cdecl function names are prefixed by an
underscore when decorated.

Note    See your C++ compiler documentation for information on C++ name decoration.

 __stdcall

The __stdcall calling convention is used to call Win32 API functions. The stack is cleaned up by the
callee, so the compiler makes vararg functions __cdecl. Functions that use this calling convention
require a function prototype.

All function arguments are pushed on the stack. In C, the __stdcall function names are prefixed by an
underscore and suffixed with @number when decorated, where number is the number of bytes (in
decimal) used by the widened arguments pushed to the stack.

 __fastcall

The __fastcall calling convention is similar to the __stdcall calling convention, but __fastcall speeds
up function calling by storing some number of arguments in registers. Any additional arguments are
pushed to the stack as in the other calling conventions.

In C, the __fastcall function names are prefixed by the at sign (@) and suffixed with @number when
decorated, where number is the number of bytes (in decimal) used by the widened arguments pushed
to the stack plus the number of bytes taken by the widened arguments passed in registers.

Note    Future compiler versions may use different registers to store parameters.

 thiscall

This is the default calling convention used by C++ member functions that do not use variable
arguments. The stack is cleaned up by the callee, so the compiler makes vararg functions __cdecl
and pushes the this pointer on the stack last. The thiscall calling convention cannot be explicitly
specified in a program because thiscall is not a keyword.

All function arguments are pushed on the stack. Because this calling convention applies only to C++,
there is no C name decoration scheme.

 Example

The following example shows the results of making a function call using various calling conventions.
This example is specific to an Intel-based Windows C/C++ compiler.

Function Prototype and Call

This example is based on the following function skeleton. Replace calltype with the appropriate calling
convention. The C decorated names are listed; see your compiler documentation for the C++
decorated names.

void calltype MyFunc(char c, short s, int i, double f);
.
.
.
void MyFunc(char c, short s, int i, double f)

{
.
.
.
}

.

.

.
MyFunc ('x', 12, 8192, 2.7183);

Results

The following lists display the stack and register contents using the __cdecl calling convention. The C
decorated function name is "_MyFunc".

Address Contents
ESP+0x1
4
ESP+0x1
0

2.7183

ESP+0x0
C

8192

ESP+0x0
8

12

ESP+0x0
4

x

ESP Return address

Register Contents
ECX Not used
EDX Not used

The following lists display the stack and register contents using the __stdcall and thiscall calling
conventions. The C decorated name (for __stdcall, not for thiscall) is "_MyFunc@20".

Address Contents
ESP+0x1
4
ESP+0x1

2.7183

0
ESP+0x0
C

8192

ESP+0x0
8

12

ESP+0x0
4

x

ESP Return address

Register Contents
ECX this (thiscall only)
EDX Not used

The following lists display the stack and register contents using the __fastcall calling convention. The
C decorated name is "@MyFunc@20".

Address Contents
ESP+0x0
C
ESP+0x0
8

2.7183

ESP+0x0
4

8192

ESP Return address

Register Contents
ECX x
EDX 12

 Porting 16-bit Code to 32-bit Windows

When you begin writing applications for 32-bit Windows, you probably already have existing
applications for 16-bit Windows. Porting these applications is the quickest way to start producing 32-bit
software.

This guide describes how to create a 32-bit version of an application written for Windows 3.x in C, as
well as how to make the code portable between versions of Windows. Portable code can be
recompiled as either a 16-bit application or a 32-bit application, by setting an option.

This guide includes the following topics:

· Overview of 32-bit programming
· Using PORTTOOL to automate porting
· Steps in porting applications
· Special considerations for advanced applications
· Dynamic-link libraries

 Overview of 32-bit Programming

The Application Program Interface (API) for Win32 uses the flat 32-bit addressing mode, supports
source code portability with RISC processors, and supports high-end capabilities such as security and
true multitasking.

One of the major design goals of the 32-bit API was to minimize the impact on existing code, so that
16-bit applications can be adapted as easily as possible. However, some changes were mandated by
the larger address space. Pointers are all 32 bits wide and no longer near or far, and your code cannot
make assumptions based on segmented memory.

Items which have increased to 32 bits include the following:

· Pointers
· Window handles
· Handles to other objects, such as pens, brushes, and menus
· Graphics coordinates

These size differences are generally resolved in the header files (see WINDOWS.H) or by the C
language, but some changes to source code are necessary. Because the different sizes cause some
message parameters to be packed with information differently, you must rewrite code that handles
these messages. The larger size of graphics coordinates also affects a number of function calls.

Some source-code changes are required because Win32 uses higher-level mechanisms for certain
operations, such as file-system calls. These mechanisms make the 32-bit API adaptable to a wide
number of platforms, and it supports powerful new features such as multiple threads of execution.

Although Windows 3.x and Win32 were designed to be as compatible as possible, you may need to
look carefully over a large amount of source code. Where do you start? The top-down approach is
recommended:

1. Compile the application for 32 bits, and note the errors generated by the compiler.
2. Replace complex procedures that are difficult to port, as well as procedures written in assembly

language, with stub procedures. (These do nothing except return).
3. Fix errors in the main portion of the application, using the techniques described in this guide.
4. Fill in each of the stub procedures, one at a time, with portable code once the main portion of the

application compiles and runs correctly.

 Using PORTTOOL to Automate Porting

You can use the PORTTOOL utility (PORTTOOL.EXE) to help port applications more easily. This utility
finds locations in your code, such as references to certain functions and messages, that are likely to
need revision. You should use PORTTOOL in conjunction with the information in this guide.

PORTTOOL uses settings in the file PORT.INI to determine what items to look for. This file is based on
the Summary of Function and Message Differences table. You may want to add the following setting to
this file, to make sure that PORTTOOL can find the Help file on the Win32 API:

[PORTTOOL]
 WinHelp=c:\mstools\bin\win32.hlp

Run PORTTOOL and load a Windows 3.x source file. Select the SearchAPI option from the Search
menu to search for occurrences of problematic functions and messages. When an occurrence of either
is found, a dialog box appears specifying the message or function and briefly suggesting what change
needs to be made. Although the porting tool is not intended to replace your primary editor, it does
support basic editing capabilities (such as Cut, Paste, and Search).

 Steps in Porting Applications

The next few topics describe general steps you should take each time you port a 16-bit application to
Win32. If your application uses advanced techniques, such as manipulating the WIN.INI file, focus, and
mouse capture, you may need to consult Special Considerations for Advanced Applications.

The basic steps to porting an application include rewriting the Windows procedure, replacing WORD by
proper data types, handling 32-bit messages, and adjusting some of the function calls.

 Revising the Window Procedure Declaration

The first step in porting a Windows 3.x application is to revise the declaration of the window procedure.
The declaration of a window procedure for a Windows 3.x application is shown below. Note the use of
FAR PASCAL, unsigned, and WORD, respectively, in the first three lines:

LONG FAR PASCAL MainWndProc(HWND hWnd,
unsigned message,
WORD wParam,
LONG lParam)

To revise the declaration for Win32, replace the data types used in Windows 3.x (FAR PASCAL and
WORD) with CALLBACK and WPARAM. The revised version is shown below.

LRESULT CALLBACK MainWndProc(HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam)

FAR PASCAL, shown in the Windows 3.x version of this code, can be used to compile applications for
Win32, but it will be defined as an empty string (and is thus ignored). The CALLBACK function type is
recommended because the header files define it as appropriate for the compiler; currently, Win32 uses
the stdcall calling convention, but future versions of the Win32 Development Kit may use different
conventions to optimize for more advanced processors.

The following table summarizes the changes to the declaration noted in the above example:

Changes to the Window Procedure Declaration
Windows 3.x Win32 (portable code) Reason for changing
FAR
PASCAL

CALLBACK CALLBACK is guaranteed to
use whatever calling convention
is appropriate for Windows

unsigned UINT Meaning is the same, but UINT
guarantees portability for future
platforms

WORD WPARAM WORD is always 16 bits.
WPARAM is portable.

LONG LPARAM Not required, but consistent
with WPARAM convention

The most significant difference between the Windows 3.x declaration and the portable version involves
the wParam parameter, which under Win32 grows to 32 bits in size.

The combination of a 32-bit wParam message parameter, along with the fact that addresses and
handles grow to 32 bits, means that a number of messages must be repacked, as described in
Handling 32-bit Messages.

 Using Proper Data Types

16-bit Windows source code often uses the type WORD interchangeably with types such as HWND
and HANDLE. For example, the typecast (WORD) might be used to cast a data type to a handle:

hWnd = (WORD) SendMessage(hWnd, WM_GETMDIACTIVATE, 0, 0);

This code compiles Windows 3.x application correctly, because both the WORD type and handles are
16 bits. But the code produces errors when compiled for Win32, because handles (such as HWND
types) grow to 32 bits while the WORD type is still 16 bits.

To write portable code, examine each occurrence of WORD casts and data definitions in your code,
and revise as follows:

· If a variable or expression is to hold a handle, replace WORD with HWND, HPEN, HINSTANCE, or
another handle type.

· If a variable or expression is a graphics coordinate or some other integer value that grows from 16 to
32 bits, replace WORD with UINT.

· Maintain use of the WORD type only if the data type needs to be 16 bits for all versions of Windows
(usually because it is a function argument or structure member).

· If in doubt, check reference documentation.

UINT is defined to be the natural integer size for the target environment: either 16 or 32 bits. Thirty-two-
bit operating environments, especially with RISC processors, actually handle 32-bit data more
efficiently than 16-bit data.

In the portable version of the previous example, the (WORD) cast is replaced by (HWND):

hWnd = (HWND) SendMessage(hWnd, WM_GETMDIACTIVATE, 0, 0);

In general, use of the most specific type possible is recommended for writing more portable code.
Avoid using a generic handle type such as HANDLE when you can. Try to use a more specific type
such as HPEN. You should also define specific types for application-specific objects you might create.

 Handling 32-bit Messages

When you move from Windows 3.x to Win32, the information packing changes for some messages.
You can either:

· Revise the code so that it works only for the 32-bit version.
· Make the message-handling code portable, so that you can easily compile for either the 16-bit or 32-

bit environment.

The second method is strongly recommended. This guide focuses primarily on writing portable
versions of the code.

Handles grow to 32 bits under Win32 and can therefore no longer be combined with other information
and still fit into a 32-bit parameter (lParam). The handle now occupies all of lParam, so information
formerly in the high or low word of lParam must now move to wParam.

Because the wParam message parameter also grows to 32 bits, it can hold the information that can no
longer be held in lParam. The following table shows how this repacking works for WM_COMMAND,
one of the messages affected:

Environment wParam lParam
Windows 3.x id hwnd, cmd
Win32 id, cmd hwnd (32 bits)

The following figure illustrates how the sizes of the parameters change, as
well as how information is repacked: wParam
lParam

 +----------+ +----------+----------+
WM_COMMAND, | id | | hwnd | cmd |
Windows 3.x +----------+ +----------+----------+
 ^
 +-------------------------+
 V
 +----------+----------+ +----------+----------+
WM_COMMAND, | id | cmd | | hwnd |
Win32 +----------+----------+ +----------+----------+

 Extracting Data from Messages with Portable Code

When your code handles a Windows message that has been repacked, the cleanest way to revise the
code is to first extract needed information from the message and store the information in local
variables. This localizes message packing issues to a few lines of your code.

For example, if your application was written for 16 bits, you can use the following code to handle the
WM_COMMAND message:

case WM_COMMAND:
id = wParam;
hwndChild = LOWORD(lParam);
cmd = HIWORD(lParam);

Here is the portable version of the same code, which yields correct results, whether you compile for the
16-bit or 32-bit environment:

case WM_COMMAND:
id = LOWORD(wParam);
hwndChild = (HWND)(UINT)lParam;

#ifdef WIN32
cmd = HIWORD(wParam);

#else
cmd = HIWORD(lParam);

#endif

Each of the examples of data extraction above (id, hwndChild, and cmd) illustrates a common case of
repacking problems. The following topics deal with each case in turn:

· Data always occupying the low 16 bits
· A handle changing size but not location
· Data that changes in location

Data Always Occupying the Low 16 Bits

The id data, in this case, always occupies the low word of wParam and is always 16 bits. The
LOWORD macro produces the correct results because it always returns a 16-bit data type. The result
is either all of wParam (if 16 bits) or the low half (if 32 bits):

id = LOWORD(wParam); // 16-bit: id=wParam

Handles Not Changing Location

The hwndChild data is the same address as lParam; it is either in the low byte or it occupies all of
lParam. As long as the address of a handle is always that of lParam, using the cast (HWND)(UINT)
correctly extracts the handle:

hwndChild = (HWND)(UINT)lParam; // 16-bit: hwnd=LOWORD(lParam);

Data Changing Location

In cases where a piece of data changes packing location under Win32, you need to use an #ifdef
statement (or you can write your own conversion macros). In this case, the cmd data moves from the
high word of wParam to the high word of wParam, so the portable version of the code is:

#ifdef WIN32
cmd = HIWORD(wParam);

#else

cmd = HIWORD(lParam);
#endif

Often, LOWORD and HIWORD macros create portability problems, because you should usually
(except as indicated here) not be extracting parts of data types.

 Using Message Crackers to Write Portable Code

Message crackers are a set of macros that parse message parameters.    They enable you to write
portable code without having to use #ifdef statements to parse messages. Some examples of macros
used to parse message parameters follow:

GET_WM_COMMAND_ID (wParam, lParam) // Parse control ID value
GET_WM_COMMAND_HWND(wParam, lParam) // Parse control HWND
GET_WM_COMMAND_CMD (wParam, lParam) // Parse notification command

For each version of Windows (Windows 3.x and Win32), there is a WINDOWSX.H header file that
defines these macros as appropriate. Refer to Handling Messages with Portable Macros for more
information.

 Summary of Windows Messages Affected

Use the following table to reference the packing of Windows messages affected by porting. The
approaches discussed in the previous sections can be used for each message. Where two parameters
are given, the one listed first corresponds to the least-significant 16 bits.

Except for the WM_CTLCOLOR messages, each message is given below with two rows: the first row
gives 16-bit Windows packing for the message, the one below it gives Win32 packing.

Message

wParam:
 Windows 3.x
 Win32

lParam:
 Windows 3.x
 Win32

WM_ACTIVATE (16-bit
Windows)

state fMinimized,
hwnd

(Win32) state,
fMinimized

hwnd (32 bits)

WM_CHARTOITEM (16-bit
Windows)

char pos, hwnd

(Win32) char, pos hwnd (32 bits)
WM_COMMAND (16-bit

Windows)
id hwnd, cmd

(Win32) id, cmd hwnd (32 bits)
WM_CTLCOLOR (16-bit

Windows)
hdc hwnd, type

WM_CTLCOLOR type
(Win32)

(Win32) hdc (32 bits) hwnd (32 bits)

Note    Under Win32, WM_CTLCOLOR is replaced by a series of messages, each corresponding to a
different type. To write portable code, use #ifdef to handle this difference.

Message

wParam:
 Windows 3.x
 Win32

lParam:
 Windows 3.x
 Win32

WM_MENUSELECT (16-bit
Windows)

cmd flags, hMenu

(Win32) cmd, flags hMenu (32
bits)

WM_MDIACTIVATE (16-bit
Windows)

fActivate hwndDeactiv
ate,
hwndActivat
e

(Win32) hwndActivate
(32 bits)

hwndDeactiv
ate (32 bits)

WM_MDISETMENU (16-bit
Windows)

0 hMenuFrame
,
hMenuWindo
w

(Win32) hMenuFrame
(32 bits)

hMenuWindo
w (32 bits)

WM_MENUCHAR (16-bit char hMenu,

Windows) fMenu
(Win32) char, fMenu hMenu (32

bits)

WM_PARENTNOTIF
Y

(16-bit
Windows)

msg id,
hwndChild

(Win32) msg, id hwndChild
(32 bits)

WM_VKEYTOITEM (16-bit
Windows)

code item, hwnd

(Win32) code, item hwnd (32
bits)

EM_GETSEL
(returns wStart,
wEnd)

(16-bit
Windows)

0 0

(Win32) 0 or lpdwStart 0 or lpdwEnd
EM_LINESCROLL (16-bit

Windows)
0 nLinesVert,

nLinesHorz
(Win32) mLinesHorz (32

bits)
nLinesVert
(32 bits)

EM_SETSEL (16-bit
Windows)

0 wStart, wEnd

(Win32) wStart (32 bits) wEnd (32
bits)

WM_HSCROLL,
WM_VSCROLL

(16-bit
Windows)

code pos, hwnd

(Win32) code, pos hwnd (32
bits)

 Summary of DDE Messages Affected

DDE messages are packed differently for Win32 and Windows 3.x. These differences are shown in the
following table.

Message

wParam:
 Windows 3.x
 Win32

lParam:
 Windows 3.x
 Win32

WM_DDE_ACK
(posted form only)

(16-bit
Windows)

hwnd wStatus,
aItem or
wStatus,
hCommands

(Win32) hwnd (32 bits) hDDEAck
(see below)

WM_DDE_ADVISE (16-bit
Windows)

hwnd hOptions,
aItem

(Win32) hwnd (32 bits) hDDEAdvise
(see below)

WM_DDE_DATA (16-bit
Windows)

hwnd hData, aItem

(Win32) hwnd (32 bits) hDDEData
(see below)

WM_DDE_POKE (16-bit
Windows)

hwnd hData, aItem

(Win32) hwnd (32 bits) hDDEPoke
(see below)

Because of storage limitations, some of the information in the 32-bit versions of the messages is stored
in a structure, which is accessed through the handle in lParam. You can use the following functions to
extract information from these structures:

PackDDElParam
UnPackDDElParam
FreeDDElParam

 Adjusting Calls to Functions

Most of your source code is not affected by differences between the APIs of Windows 3.x and Win32.
The underlying definitions in the header files (see WINDOWS.H) automatically adjust data to the
correct size. But you may need to revise code if you call functions in any of the following categories:

· Graphics functions
· Functions accessing "extra" window data
· MS-DOS system calls
· Far-pointer functions
· Functions getting list and combo box contents

 Graphics Functions

Most of the Windows 3.x functions that must be replaced return packed x- and y-coordinates.

In Windows 3.x, the x- and y-coordinates are 16 bits each and are packed into the 32-bit (DWORD)
function return value, the largest valid size. In Win32, the coordinates are 32 bits each, totaling 64 bits,
and are thus too large to fit into a single return value. Each Windows 3.x function is replaced by a
Win32 function with the same name, but with an Ex suffix added. The Ex functions pass the x- and y-
coordinates using an additional parameter instead of a return value. These new functions are
supported by both Win32 and Windows 3.x.

Windows 3.x implements these functions with a static library, in order that source code compiled with
the new calls will also function in Windows 3.x.

The problematic graphics functions fall into two groups. The first group, functions that set coordinates,
are shown below with the Win32 versions:

Windows 3.x function Portable version of function
MoveTo MoveToEx
OffsetViewportOrg OffsetViewportOrgEx
OffsetWindowOrg OffsetWindowOrgEx
ScaleViewportExt ScaleViewportExtEx
ScaleWindowExt ScaleWindowExtEx
SetBitmapDimension SetBitmapDimensionEx
SetMetaFileBits SetMetaFileBitsEx
SetViewportExt SetViewportExtEx
SetWindowExt SetWindowExtEx
SetWindowOrg SetWindowOrgEx

Each of the functions in the first column returns a value, although application code frequently ignores it.
However, even if you do not care about the return value, you must still replace the old function call by
the new form. The old functions are not supported under Win32.

Each Ex function includes an additional parameter that points to a location to receive data. After the
function call, this data provides the same information as the corresponding function's return value. If
you do not need this information, you can pass NULL to this parameter.

Under Windows 3.x, a call to the MoveTo function can be written as follows:

MoveTo(hDC, x, y);

In the portable version supported by both versions of Windows, the call to MoveTo is rewritten as
follows. Note that the information returned by MoveTo under Windows 3.x is still ignored:

MoveToEx(hDC, x, y, NULL);

As a general rule, pass NULL as the last parameter unless you need to use the x- and y-coordinates
returned by the Windows 3.x version. In the latter case, use the procedure outlined in the next few
paragraphs, for the Get functions.

The second group of functions consists of functions in which the application code normally does use
the return value. They are listed in the following table.

Windows 3.x function Portable version of function
GetAspectRatioFilter GetAspectRatioFilterEx
GetBitmapDimension GetBitmapDimensionEx
GetBrushOrg GetBrushOrgEx

GetCurrentPosition GetCurrentPositionEx
GetTextExtent GetTextExtentPoint
GetTextExtentEx GetTextExtentExPoint
GetViewportExt GetViewportExtEx
GetViewportOrg GetViewportOrgEx
GetWindowExt GetWindowExtEx
GetWindowOrg GetWindowOrgEx

The GetTextExtent function uses the Point suffix, because there is already a Windows 3.1 extended
function GetTextExtentEx. Therefore, the Point suffix is added to the functions GetTextExtent and
GetTextExtentEx, to name the portable versions for each.

As with the first group of functions, the Ex (and Point) versions each add an additional parameter: a
pointer to a POINT or SIZE structure to receive x/y coordinates. Because this structure is always the
appropriate size for the environment, so you can write portable code by:

· Declaring a local variable of type POINT or SIZE, as appropriate.
· Passing a pointer to this structure as the last parameter to the function.
· Calling the function. The function responds by filling the structure with the appropriate information.

For example, the Windows 3.x version call to GetTextExtent extracts the x- and y-coordinates from a
DWORD return value (stored in a temporary variable, dwXY):

DWORDdwXY;

dwXY = GetTextExtent(hDC, szLabel1, strlen(szFoo));
rect.left = 0; rect.bottom = 0;
rect.right = LOWORD(dwXY);
rect.top = HIWORD(dwXY);
InvertRect(hDC, &rect);

The portable version passes a pointer to a temporary SIZE structure, and then it extracts data from the
structure:

SIZE sizeRect;

GetTextExtentPoint(hDC, szLabel1, strlen(szLabel1), &sizeRect);
rect.left = 0; rect.bottom = 0;
rect.right = sizeRect.cx;
rect.top = sizeRect.cy;
InvertRect(hDC, &rect);

 Functions That Access the Extra Window Data

The functions described in this topic manipulate the "extra" data area of a window structure. This
structure can contain system information as well as user-defined data. You specify the size of this data
area by using the cbClsExtra member of the WNDCLASS structure when you register the window
class.

The following Windows 3.x functions get or set 16 bits during each call:

GetClassWord
GetWindowWord
SetClassWord
SetWindowWord

You can use these functions in Windows 3.x to access system information, stored as 16-bit items. But
in Win32, each of these system-information items grows to 32 bits. Therefore, in Win32, you would use
the following functions which access 32 bits at a time:

GetClassLong
GetWindowLong
SetClassLong
SetWindowLong

Each of these functions take two parameters: a window handle and an offset into the data area. These
offsets differ depending on whether you are compiling for Windows 3.x or Win32.

The index values specifying these offsets correspond to each other as follows. Note that neither
version is portable.

Windows 3.x Win32 (nonportable)
GCW_CURSOR GCL_CURSOR
GCW_HBRBACKGROUN
D

GCL_HBRBACKGROUND

GCW_HICON GCL_HICON
GWW_HINSTANCE GWL_HINSTANCE
GWW_HWNDPARENT GWL_HWNDPARENT
GWW_ID GWL_ID
GWW_USERDATA GWL_USERDATA

To create portable code using these offsets, you need to use #ifdef statements as shown below. Both
the function and the value of the second parameter change:

#ifdef WIN32
hwndParent = (HWND)GetWindowLong(hWnd, GWL_HWNDPARENT);

#else
hwndParent = (HWND)GetWindowWord(hWnd, GWW_HWNDPARENT);

#endif

In the case of GWW_HWNDPARENT, you can avoid calls to GetWindowLong and GetWindowWord
altogether, and instead use a single call to a new function, GetParent. This function returns a handle of
the appropriate size. The following example illustrates a call to GetParent that has the same results as
the #ifdef statements shown in the previous example:

hwndParent = GetParent(hWnd);

Remember that offsets may change for private data that you store in the Window structure. You should
review this code carefully and recalculate offsets for Win32, noting that some data types, such as

handles, increase in size.

 Porting MS-DOS System Calls

The DOS3Call function in Windows 3.0 must be called from assembly language. It is typically used to
perform file I/O. In Win32, assembly language code that calls DOS3Call should be replaced by the
appropriate Win32 file I/O calls. Other (non-file) INT 21H functions should be replaced, as shown in the
following table, with the portable Windows call:

INT 21H
subfunction

MS-DOS operation Win32 API equivalent

0EH Select Disk SetCurrentDirectory
19H Get Current Disk GetCurrentDirectory
2AH Get Date GetSystemTime
2BH Set Date SetSystemTime
2CH Get Time GetSystemTime
2DH Set Time SetSystemTime
36H Get Disk Free Space GetDiskFreeSpace
39H Create Directory CreateDirectory
3AH Remove Directory RemoveDirectory
3BH Set Current Directory SetCurrentDirectory
3CH Create Handle CreateFile
3DH Open Handle CreateFile
3EH Close Handle CloseHandle
3FH Read Handle ReadFile
40H Write Handle WriteFile
41H Delete File DeleteFile
42H Move File Pointer SetFilePointer
43H Get File Attributes GetFileAttributes
43H Set File Attributes SetFileAttributes
47H Get Current Directory GetCurrentDirectory
4EH Find First File FindFirstFile
4FH Find Next File FindNextFile
56H Change Directory

Entry
MoveFile

57H Get Date/Time of File GetFileTime
57H Set Date/Time of File SetFileTime
59H Get Extended Error GetLastError
5AH Create Unique File GetTempFileName
5BH Create New File CreateFile
5CH Lock LockFile
5CH Unlock UnlockFile
67H Set Handle Count SetHandleCount

 File Operations

Fixed-length buffers for filenames and environment strings may need to be increased in size. Windows
NT (one implementation of Win32) supports filenames of up to 256 characters, rather than the 8.3
format supported by MS-DOS. You can make code more portable by allocating longer buffers or by
using dynamic memory allocation. If you want to conserve memory under Windows 3.x, use #ifdef
statements to allocate buffers of the proper length for the environment.

Another area in which you might need to make changes is low-level file I/O. In porting Windows 3.x
code, some developers have chosen to change from using the Windows API file I/O functions (such as
_lopen and _lread) to using the C run-time low-level I/O functions (such as _open and _read). All
versions of the Windows API support binary mode only, not text mode, but the C run-time calls use text
mode by default. Therefore, when changing from the Windows file I/O to the C run-time versions, open
files in binary mode by doing one of the following:

· Link with BINMODE.OBJ, which changes the default mode for all file-open operations.
· Open the individual files with _O_BINARY flag set.
· Use setmode to change an open file to _O_BINARY.

 Far-Pointer Functions

Windows 3.x provides functions for memory and file manipulation using far pointers, which have the
form _fxxxx. In Win32, these functions are replaced by similarly named functions of the form xxxx,
because there is no need for far pointers in Win32. (The _f prefix is dropped from the name.)

The WINDOWSX.H file defines the _fxxxx function names so that in Win32, the _fxxxx function names
are equated to the corresponding functions that are still supported. This means that as long as you
include WINDOWSX.H, you don't have to rewrite calls to these functions. Some of the definitions are:

#define _fmemcpy(x,y,z) memcpy(x,y,z)
#define _fstrcpy(x,y) strcpy(x,y)
#define _fstrcmp(x,y) strcmp(x,y)
#define _fstrcat(x,y) strcat(x,y)

 Functions Getting List and Combo Box Contents

The Win32 API contains two new functions, shown in the following table, that provide an improved
means of extracting list and combo box contents. In each case, the portable version of the function lets
you specify a buffer size for a string that receives the information.

Windows 3.x function Portable version of the function
DlgDirSelect DlgDirSelectEx
DlgDirSelectComboBox DlgDirSelectComboBoxEx

For example, Windows 3.x code might contain the following function call:

DlgDirSelect(hDlg, lpString, nIDListBox);

This line of code should be replaced by the following call to DlgDirSelectEx:

DlgDirSelectEx(hDlg, lpString, sizeof(lpString), nIDListBox);

 Revising the WinMain Function

You need to revise the WinMain function if either of the following conditions is true. Otherwise, the
code in this function generally needs no change.

· Your application needs to know when another instance of the application is running, or
· You you need to access the command line

The parameter list for WinMain is the same for Win32 and Windows 3.x:

APIENTRY WinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow)

However, under Win32, there are two differences in the values passed through these parameters:

· Unlike Windows 3.x, hPrevInstance always returns NULL.
· The lpCmdLine parameter points to a string containing the entire command line, not just the

parameters.

The following two sections discuss each of these differences.

 Initializing Instances

The hPrevInstance parameter always returns NULL in Win32. This causes each instance of an
application to act as though it were the only instance running. The application must register the window
class, and it cannot access data used by other instances, except through standard interprocess
communication techniques such as shared memory or DDE. Calls to GetInstanceData must be
replaced with these techniques.

Source code for Windows 3.x normally tests hPrevInstance to see if another instance of the application
is already running; if the value is NULL (indicating there is no previous instance), the code registers the
window class. This code is automatically portable to Win32 and needs no change: the result under
Win32 is simply that it always registers the window class, which is correct behavior.

Some applications must know if other instances are running. Sometimes this is because data sharing is
required. More frequently, it is because only one instance of the application should run at a time.
Examples of this latter case include Control Panel and Task Manager.

Applications cannot use hPrevInstance to test for previous instances under Win32. An alternative
method must be used, such as creating a unique named pipe, creating/testing for a named semaphore,
broadcasting a unique message, or calling FindWindow.

 Accessing the Command Line Through LpCmdLine

In Windows 3.x, the lpCmdLine parameter points to a string containing the command line starting with
the first parameter. The name of the application is not included. In Win32, lpCmdLine points to a string
containing the entire command line, including the application itself.

 Special Considerations for Advanced Applications

If you have applied the guidelines and procedures described in the preceding topics, you may well
have been able to revise your entire application so that it is portable. However, problems specific to
applications that use advanced calls or C coding tricks require additional revision. If your application is
fairly complex, you should scan through the next two topics to make sure that you don't need additional
changes.

 Revising Advanced Function Calls

Applications may need further revision if they use calls dealing with any of the following: accessing .INI
files, setting focus and active window, capturing the mouse, and sharing graphical objects.

 Profile Strings and .INI Files

Although Windows NT and Win32s are both examples of Win32, Windows NT presents some
additional features not present in Win32s.

Windows 3.x applications can access .INI files directly. In Windows NT, however, such code doesn't
work because the information in .INI files is replaced by a registration database. This database offers a
number of advantages, including security controls that prevent an application from corrupting system
information, error logging, remote software updating, and remote administration of workstation
software.

You can write portable code by using the profile API supported by Windows 3.x and all versions of
Win32, including Windows NT. Call the GetProfileString and WriteProfileString functions instead of
accessing .INI files directly. These functions use whichever underlying mechanism (.INI file or
registration database) is supported by the environment you are compiling for.

 Focus, Mouse Capture, and Localized Input

The Windows NT environment differs from Windows 3.x in that each thread of execution has its own
message queue. This change affects window focus and mouse capture.

Window Focus

In Windows NT, each thread of execution can set or get the focus only to windows created by the
current thread. This behavior prevents applications from interfering with each other. One application's
delay in responding cannot cause other applications to suspend their response to user actions, as
often happens in Windows 3.x.

Consequently, the following functions work differently under Windows NT:

GetActiveWindow
GetCapture
GetFocus
ReleaseCapture
SetActiveWindow
SetCapture
SetFocus

Get functions can now return NULL, which could not happen in Windows 3.x. Therefore, it's important
to test the return value of GetFocus before using it. Instead of returning the window handle of another
thread, the function returns NULL. For example, you call GetFocus and another thread has the focus.
Note that it's possible for a call to GetFocus to return NULL even though an earlier call to SetFocus
successfully set the focus. Simliar considerations apply to GetCapture and GetActiveWindow.

The Set functions can only specify a window created by the current thread. If you attempt to pass a
window handle created by another thread, the call to the Set function fails.

Mouse Capture

Mouse capture is also affected by the Windows NT localized input queues. If the mouse is captured on
mouse down, the window capturing the mouse receives mouse input until the mouse button is
released, as in Windows 3.x. But if the mouse is captured while the mouse button is up, the window
receives mouse input only as long as the mouse is over that window or another window created by the
same thread.

 Shared Graphical Objects

Win32 applications run in separate address spaces. Graphical objects are specific to the application
and cannot be manipulated by other processes as in Windows 3.x. A handle to a bitmap passed to
another process cannot be used because the original process retains ownership.

Each process should create its own pens and brushes. A cooperative process may access the bitmap
data in shared memory (by way of standard interprocess communications) and create its own copy of
the bitmap. Alterations to the bitmap must be communicated between the cooperative processes by
way of interprocess communication.

 Solving Problems Due to C Coding Techniques

Some portability problems can be caused by C coding techniques that do not translate successfully to
other memory models and processors. You can avoid these problems if your code doesn't attempt to
exploit the fact you know about segmented memory. Standard pointer and memory management
techniques will be correctly resolved by the header files.

The coding techniques most likely to cause porting problems are described in the following sections.
For a more thorough general treatment of this subject, read Writing Portable C Programs.

 Memory and Pointers

To be portable, source code must avoid any techniques that rely on the 16-bit segment:offset address
structure, because all pointers are 32 bits in size under Win32 and use flat rather than segmented
memory.

This difference in pointer structure is usually not a problem unless the code uses HIWORD, LOWORD,
or similar macros to manipulate portions of the pointer.

For example, in Windows 3.x, memory is allocated to align on a segment boundary, which makes
memory allocation functions return a pointer with an offset of 0x0000. The following code exploits this
fact to run successfully under Windows 3.x:

ptr2 = ptr1 = malloc(); // ptr2 = xxxx:0000
LOWORD(ptr2) = index * elementsize; // Place offset of array element
 // into ptr2 low word

Such code does not work properly under Win32. But standard pointer constructs, such as the following,
always result in portable code:

ptr1 = malloc(); // Set ptr1 to start of memory block
ptr2 = ptr1[i]; // Place offset of array element

Here are some other guidelines for dealing with pointers:

· All pointers, including those that access the local heap, are 32 bits under Win32.
· Addresses never wrap, as they can with the low word in segmented addressing; for example, in

Windows 3.x, an address can wrap from 1000:FFFF to 1000:0000.
· Structures that hold near pointers in Windows 3.x must be revised because all pointers are 32 bits in

Win 32. This may affect code that uses constants to access structure members, and it may also
affect alignment.

 Structure Alignment

Applications should generally align structure members at addresses that are "natural" for the data type
and the processor involved. For example, a 4-byte data member should have an address that is a
multiple of four.

This principle is especially important when you write code for porting to multiple processors. A
misaligned 4-byte data member, which is on an address that is not a multiple of four, causes a
performance penalty with an 80386 processor and a hardware exception with a RISC processor. In the
latter cases, although the exception is handled by the system, the performance penalty is significantly
greater.

Alignment problems can be avoided by setting compiler options or adjusting your structure definitions
to meet the alignment requirements. The guidelines following ensure proper alignment for processors
targeted by Win32:

Type Alignment
char Align on byte boundaries
short (16-bit) Align on even byte boundaries
int and long (32-bit) Align on 32-bit boundaries
float Align on 32-bit boundaries
double Align on 64-bit boundaries
structures Align on 32-bit boundaries

 Ranges and Promotions

Occurrences of int, unsigned, and unsigned int indicate potential portability problems because size
and range are not constant. Data that would not exceed its range in Win32 could exceed range in
Windows 3.x. Sign extension also works differently, so exercise caution in performing bitwise
manipulation of this data.

Source code that relies on wrapping often presents portability problems, and should be avoided. For
example, a loop should not rely on an unsigned int variable wrapping at 65535 (the maximum value in
Windows 3.x) back down to 0.

 Dynamic-Link Libraries

Development of dynamic-link libraries (DLLs) is different under Win32 compared to Windows 3.x. There
are differences in the initialization and termination routines: how often they are called, what is passed,
and how much code must be written in assembly language:

· In Win32 DLLs, one function handles both initialization and termination. In Windows 3.x, the
initialization function must be provided, and the termination function, if present, must be named
WEP.

· The Win32 initialization function is called every time a new process or an additional thread accesses
the DLL for the first time, and when a process or thread detaches. In Windows 3.x, initialization and
termination functions are called only once during the lifetime of the DLL.

· In Win32, the entire DLL can be written in C (which is recommended as an aid to porting to other
processors). In Windows 3.x, the start-up code is linked to an object file written in assembly
language. Microsoft C/C++ links in an object file, LIBENTRY.OBJ, that accesses information in
information in registers and calls LibMain in the C code. In Win32, you don't need this file.

In Win32, the DLL initialization function is the same as the termination function. By convention this
function is named DllMain. A DWORD (32-bit) parameter, dwReason,    notifies the function whether
initialization or termination is taking place, and whether a process or a thread is involved. When a
process first accesses a DLL, the initialization function is called with process-attach notification: it is
assumed that the process has one thread to being with. When there is an access by an additional
thread of that process, the function is called with thread-attach notification. However, in Win32s there is
notification only for process attach and detach.

The Win32 DLL initialization function should return 1 to indicate success. Returning NULL indicates
failure.

Windows 3.x DLL initialization functions are passed the following information:

· The DLL's instance handle
· The DLL's data segment (DS)
· The heap size specified in the DLL's .DEF file
· The command line

Win32 DLL initialization functions are passed the following information:

· The hModule parameter, a module handle
· The dwReason parameter, an enumerated type which indicates which of four reasons the LibMain

procedure is being called: process attach, thread attach, thread detach, or process detach.
· The lpReserved parameter, which is unused.

The definition Win32 initialization function should look like the following code:

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD dwReason,
LPVOID lpReserved)

{
switch(dwReason) {
case DLL_PROCESS_ATTACH:
...
case DLL_THREAD_ATTACH:
...
case DLL_THREAD_DETACH:
...
case DLL_PROCESS_DETACH:

...
}

}

The Win32 module handle has the same purpose as the Windows 3.x instance handle. Otherwise,
Win32 DLL initialization functions do not include the parameters for Windows 3.x initialization, as
described in the following table.

Parameter Comment
DLL data segment Not needed in Win32; memory model is flat, not

segmented.
Size of DLL's local heap All calls to local memory management functions

operate on the default heap
Pointer to command line The command line can be obtained through a

call to the GetCommandLine function.

Windows 3.x assembly code is often limited to the LIBENTRY.ASM module, which simply accesses
information in registers and passes it to a LibMain routine written in C. DllMain will be called directly in
Win32, and LibMain will be called indirectly in Windows 3.x through the LIBENTRY code. If more of
your DLL is written in assembly language, it is a good idea to rewrite all of it in C, to make it more
portable.

 Summary of Function and Message Differences

The following table provides a list of function calls and messages that required implementation
changes for Win32.

Function/Message Support Comments
AccessResource Dropped No Win32 equivalent
AddFontResource Enhance

d
Must use string, not handle, for
filename

AllocDSToCSAlias Dropped No Win32 equivalent
AllocResource Dropped No Win32 equivalent
AllocSelector Dropped No Win32 equivalent
ChangeSelector Dropped No Win32 equivalent
CloseComm Dropped Replaced by CloseHandle
CloseSound Dropped Replaced by multimedia sound

support
CountVoiceNotes Dropped Replaced by multimedia sound

support
DefineHandleTable Dropped No Win32 equivalent
DeviceMode Dropped Replaced by portable

DocumentProperties
DlgDirSelect Dropped Replaced by portable

DlgDirSelectEx
DlgDirSelectComboBox Dropped Replaced by portable

DlgDirSelectComboBoxEx
DOS3Call Dropped Replaced by named, portable

Win32 function
ExtDeviceMode Dropped Replaced by portable

DocumentProperties
FlushComm Dropped Replaced by PurgeComm
FreeSelector Dropped No Win32 equivalent
GetAspectRatioFilter Dropped Replaced by portable

GetAspectRatioFilterEx
GetBitmapDimension Dropped Replaced by portable

GetBitmapDimensionEx
GetBrushOrg Dropped Replaced by portable

GetBrushOrgEx
GetClassWord Enhance

d
Use GetClassLong for values
that grow to 32-bits in Win32

GetCodeHandle Dropped No Win32 equivalent
GetCodeInfo Dropped No Win32 equivalent
GetCommError Dropped Replaced by GetCommState
GetCurrentPDB Dropped No Win32 equivalent
GetCurrentPosition Dropped Replaced by portable

GetCurrentPositionEx
GetEnvironment Dropped No Win32 equivalent
GetFreeSpace Dropped Replaced by

GlobalMemoryStatus

GetFreeSystemResources Dropped Replaced by
GlobalMemoryStatus

GetInstanceData Dropped No equivalent; use alternative
supported IPC mechanism.

GetKBCodePage Dropped No Win32 function equivalent
GetMetaFileBits Dropped Replaced by portable

GetMetaFileBitsEx
GetModuleUsage Enhance

d
Always returns 1 on Win32

GetTempDrive Dropped Replaced by portable
GetTempPath

GetTextExtent Dropped Replaced by portable
GetTextExtentPoint

GetTextExtentEx Dropped Replaced by portable
GetTextExtentExPoint

GetThresholdEvent Dropped Replaced by multimedia sound
support

GetThresholdStatus Dropped Replaced by multimedia sound
support

GetViewportExt Dropped Replaced by portable
GetViewportExtEx

GetViewportOrg Dropped Replaced by portable
GetViewportOrgEx

GetWindowExt Dropped Replaced by portable
GetWindowExtEx

GetWindowOrg Dropped Replaced by portable
GetWindowOrgEx

GetWindowWord Enhance
d

Use GetWindowLong for values
that grow to 32-bits on Win32

GlobalCompact Dropped No Win32 equivalent
GlobalDosAlloc Dropped No Win32 equivalent
GlobalDosFree Dropped No Win32 equivalent
GlobalFix Dropped No Win32 equivalent
GlobalLRUNewest Dropped No Win32 equivalent
GlobalLRUOldest Dropped No Win32 equivalent
GlobalNotify Dropped No Win32 equivalent
GlobalPageLock Dropped No Win32 equivalent
GlobalPageUnlock Dropped No Win32 equivalent
GlobalUnfix Dropped No Win32 equivalent
GlobalUnwire Dropped No Win32 equivalent
GlobalWire Dropped No Win32 equivalent
LimitEmsPages Dropped No Win32 equivalent
LocalCompact Dropped No Win32 equivalent
LocalInit Dropped No Win32 equivalent
LocalNotify Dropped No Win32 equivalent
LocalShrink Dropped No Win32 equivalent
LockSegment Dropped No Win32 equivalent

MoveTo Dropped Replaced by portable MoveToEx
NetBIOSCall Dropped Replaced by named, portable

Win32 function
OffsetViewportOrg Dropped Replaced by portable

OffsetViewportOrgEx
OffsetWindowOrg Dropped Replaced by portable

OffsetWindowOrgEx
OpenComm Dropped Replaced by OpenFile
OpenSound Dropped Replaced by multimedia sound

support
ProfClear Dropped Replaced by Win32 profile-string

function
ProfFinish Dropped Replaced by Win32 profile-string

function
ProfFlush Dropped Replaced by Win32 profile-string

function
ProfInsChk Dropped Replaced by Win32 profile-string

function
ProfSampRate Dropped Replaced by Win32 profile-string

function
ProfSetup Dropped Replaced by Win32 profile-string

function
ProfStart Dropped Replaced by Win32 profile-string

function
ProfStop Dropped Replaced by Win32 profile-string

function
ReadComm Dropped Replaced by ReadFile
RemoveFontResource Enhance

d
Must use string, not handle, for
filename

ScaleViewportExt Dropped Replaced by portable
ScaleViewportExtEx

ScaleWindowExt Dropped Replaced by portable
ScaleWindowExtEx

SetBitmapDimension Dropped Replaced by portable
SetBitmapDimensionEx

SetClassWord Enhance
d

Use SetClassLong for values
that grow to 32-bits on Win32

SetCommEventMask Dropped Replaced by SetCommMask
SetEnvironment Dropped No Win32    equivalent
SetMetaFileBits Dropped Replaced by portable

SetMetaFileBitsEx
SetResourceHandler Dropped No Win32 equivalent
SetSoundNoise Dropped Replaced by multimedia sound

support
SetSwapAreaSize Dropped No Win32 equivalent
SetViewportExt Dropped Replaced by portable

SetViewportExtEx
SetViewportOrg Dropped Replaced by portable

SetViewportOrgEx
SetVoiceAccent Dropped Replaced by multimedia sound

support
SetVoiceEnvelope Dropped Replaced by multimedia sound

support
SetVoiceNote Dropped Replaced by multimedia sound

support
SetVoiceQueueSize Dropped Replaced by multimedia sound

support
SetVoiceSound Dropped Replaced by multimedia sound

support
SetVoiceThreshold Dropped Replaced by multimedia sound

support
SetWindowExt Dropped Replaced by portable

SetWindowExtEx
SetWindowOrg Dropped Replaced by portable

SetWindowOrgEx
SetWindowWord Enhance

d
Use SetWindowLong for values
that grow to 32-bits on Win32

StartSound Dropped Replaced by multimedia sound
support

StopSound Dropped Replaced by multimedia sound
support

SwitchStackBack Dropped No Win32 equivalent
SwitchStackTo Dropped No Win32 equivalent
SyncAllVoices Dropped Replaced by multimedia sound

support
UngetCommChar Dropped No Win32 equivalent
UnlockSegment Dropped No Win32 equivalent
ValidateCodeSegments Dropped No Win32 equivalent
ValidateFreeSpaces Dropped No Win32 equivalent
WaitSoundState Dropped Replaced by multimedia sound

support
WriteComm Dropped Replaced by WriteFile
EM_GETSEL Enhance

d
wParam/lParam packing
changed

EM_LINESCROLL Enhance
d

wParam/lParam packing
changed

EM_SETSEL Enhance
d

wParam/lParam packing
changed

WM_ACTIVATE Enhance
d

wParam/lParam packing
changed

WM_CHANGECBCHAIN Enhance
d

wParam/lParam packing
changed

WM_CHARTOITEM Enhance
d

wParam/lParam packing
changed

WM_COMMAND Enhance
d

wParam/lParam packing
changed

WM_CTLCOLOR Dropped Replaced by
WM_CTLCOLOR<type>
messages

WM_DDE_ACK Enhance
d

wParam/lParam packing
changed

WM_DDE_ADVISE Enhance
d

wParam/lParam packing
changed

WM_DDE_DATA Enhance
d

wParam/lParam packing
changed

WM_DDE_EXECUTE Enhance
d

wParam/lParam packing
changed

WM_DDE_POKE Enhance
d

wParam/lParam packing
changed

WM_HSCROLL Enhance
d

wParam/lParam packing
changed

WM_MDIACTIVATE Enhance
d

wParam/lParam packing
changed

WM_MDISETMENU Enhance
d

wParam/lParam packing
changed

WM_MENUCHAR Enhance
d

wParam/lParam packing
changed

WM_MENUSELECT Enhance
d

wParam/lParam packing
changed

WM_PARENTNOTIFY Enhance
d

wParam/lParam packing
changed

WM_VKEYTOITEM Enhance
d

wParam/lParam packing
changed

WM_VSCROLL Enhance
d

wParam/lParam packing
changed

DCB Enhance
d

Changes to bitfields and
additional structure members

(WORD) 16-bit Check if incorrect cast of 32-bit
value

GCW_HCURSOR Dropped Replaced by GCL_HCURSOR
GCW_HBRBACKGROUND Dropped Replaced by

GCL_HBRBACKGROUND
GCW_HICON Dropped Replaced by GCL_HICON
GWW_HINSTANCE Dropped Replaced by GWL_HINSTANCE
GWW_HWNDPARENT Dropped Replaced by

GWL_HWNDPARENT
GWW_ID Dropped Replaced by GWL_ID
GWW_USERDATA Dropped Replaced by GWL_USERDATA
READ Dropped Replaced by OF_READ
WRITE Dropped Replaced by OF_WRITE
READ_WRITE Dropped Replaced by OF_READ_WRITE
HIWORD 16-bit Check if HIWORD target is 16-

or 32-bit
LOWORD 16-bit Check if LOWORD target is 16-

or 32-bit
MAKEPOINT Dropped Replaced by LONG2POINT

 Handling Messages with Portable Macros

Instead of taking the case-by-case approach, you can use message-cracking macros to write message
handlers similar to those you'd write when using Microsoft Foundation Classes. These message
handlers use the same parameter list regardless of operating system, thereby solving message-
packing issues. This guide describes these and other macros defined in WINDOWSX.H (or
WINDOWSX.H16 in the case of 16-bit applications).

This guide includes the following topics:

· Using message crackers
· Writing message crackers for user-defined messages
· Adapting message crackers to special cases
· Using control message functions

 Using Message Crackers

Message crackers are a set of macros that extract useful information from the wParam and lParam
parameters of a message and hide the details of how information is packed.

Using message crackers initially requires you to revise some of your code. They also have a minor
impact on performance by involving an additional function call. However, they offer the following major
advantages:

· Portability. Message crackers free you from packing issues and guarantee proper extraction of
information, regardless of which environment you're compiling for.

· Readability. With message crackers, you can understand source code because message
parameters are translated into data with meaningful names.

· Ease of use. In addition to decoding wParam and lParam, message crackers place message-
handling code in separate functions. Instead of a long switch statement, you have a separate
handler for each message.

 Overview of Message Crackers

You use message crackers in your code by writing a separate message handler function for each
message. Then you use a macro to call each of those functions from within your window procedure.

Use of message crackers for all messages is recommended, but you can optionally combine code that
uses message crackers for some messages with code that responds to other messages directly.

Note    To use message crackers, make sure you include the file WINDOWSX.H (or WINDOWSX.H16,
in the case of 16-bit applications).

Suppose you have a message, WM_THIS. The code to handle this message would look something like
this:

LONG WINAPI My_WndProc(HWND hwnd, UINT msg, UINT wParam, LONG lParam)
.
.
.
switch(msg) {

case WM_THIS:
// Place code to handle message here

To use message crackers, write a message handler, and then call it from the switch statement.
Suppose that there are two pieces of information contained in the WM_THIS message: thisHdc and
thisData. Message crackers unpack this information from wParam and lParam, and pass it as
parameters to your message handler, MyWnd_OnThis:

switch (msg) {
case WM_THIS:

return HANDLE_WM_THIS (hwnd, wParam, lParam, MyWnd_OnThis);
...
}

LRESULT MyWnd_OnThis (HWND hwnd, HDC thisHdc, WORD thisData)
{

// Place code to handle message here
}

The parameters to MyWnd_OnThis (after hwnd, which is always the first parameter) consist of
information directly usable by your code: thisHdc and thisData. The macro HANDLE_WM_THIS
translates wParam and lParam into thisHdc and thisData as it makes the function call.

The following general steps summarize how to use message crackers:

1. Declare a prototype for each message-handling function.
2. In the windows procedure, call the message handler. Use either a message decoder (such as

HANDLE_WM_CREATE) or the HANDLE_MSG macro.
3. Write the message handler. Use a message forwarder such as FORWARD_WM_CREATE to call

the default message procedure.

 Declaring Message-Handler Prototypes

To use message crackers, first declare a prototype for the message handling function ("message
handler" for short). Although you can give your message handlers any name you want, a
recommended convention is:

WndClass_OnMsg

in which WndClass is the name of the window class, and Msg is the name of the message in mixed
case, with the "WM" dropped. For example, the following code contains prototypes for functions
handling WM_CREATE, WM_PAINT, and WM_MOUSEMOVE:

BOOL MyWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* lpCreateStruct);
void MyWnd_OnPaint(HWND hwnd);
void MyWnd_OnMouseMove(HWND hwnd, int x, int y, UINT keyFlags);

The first parameter to each function is always hwnd, which is a handle to the window that received the
message. The rest of the parameters vary; each message handler has its own customized parameter
list. To declare the appropriate parameters for a message, see the corresponding definitions in
WINDOWSX.H.

 Calling the Message Handler

In your window procedure, you call a message handler by using a message-decoder macro such as
HANDLE_WM_CREATE or HANDLE_WM_PAINT. The general form for using these macros is:

case msg:
return HANDLE_msg (hwnd, wParam, lParam, handler);

You should always return the value of the macro, even if no return value is expected and the
corresponding message handler has void return type.

For example, you could place the following macros in your code:

switch(msg) {
case WM_CREATE:

return HANDLE_WM_CREATE(hwnd, wParam, lParam, MyWnd_OnCreate);
case WM_PAINT:

return HANDLE_WM_PAINT(hwnd, wParam, lParam, MyWnd_OnPaint);
case WM_MOUSEMOVE:

return HANDLE_WM_MOUSEMOVE(hwnd, wParam, lParam,
 MyWnd_OnMouseMove);

.

.

.

Alternatively, you can use the generic HANDLE_MSG macro, which generates the same code as the
previous example, but saves space:

switch(msg) {
HANDLE_MSG(hwnd, WM_CREATE, MyWnd_OnCreate);
HANDLE_MSG(hwnd, WM_PAINT, MyWnd_OnPaint);
HANDLE_MSG(hwnd, WM_MOUSEMOVE, MyWnd_OnMouseMove);
.
.
.

HANDLE_MSG assumes that you use the names wParam and lParam in the window procedure
parameter list. You cannot use this macro if you have given these parameters other names.

 Writing the Message Handler

In the message-handling function, you respond to the message using parameters that have been
translated from wParam and lParam and passed to the function. In the following example,
lpCreateStruct is an example of a parameter translated from wParam and lParam:

BOOL MyCls_OnCreate(HWND hwnd, CREATESTRUCT FAR* lpCreateStruct)
{

// Place message-handling code here

 return FORWARD_WM_CREATE(hwnd, lpCreateStruct, DefWindowProc);
}

Message-handling code often finishes by calling DefWindowProc or some other default message
procedure. You make this function call by using a "message forwarder," which uses the following form:

return FORWARD_msg(parmlist, defaultMsgProc);

The parmlist is the same list of parameters in the message handler, and defaultMsgProc is the default
message procedure, typically DefWindowProc. The message forwarder repacks the information in the
parameter list into the appropriate wParam/lParam format (depending on target environment) and
forwards the message to the default message procedure.

 Putting It Together: An Example

The following example demonstrates the use of several message handlers in a window procedure,
showing where the various prototypes and macros fit into the code.

The header file, MYAPP.H, consists of function prototypes, including prototypes for the message
handlers. Note how each message handler has its own parameter list, which is customized to best
represent the information packed in the corresponding message:

// MYAPP.H

// Window procedure prototype

LONG WINAPI MyWnd_WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam);

// Default message handler

#define MyWnd_DefProc DefWindowProc

// MyWnd class message handler functions, declared in a .h file:
//
void MyWnd_OnMouseMove(HWND hwnd, int x, int y, UINT keyFlags);
void MyWnd_OnLButtonDown(HWND hwnd, BOOL fDoubleClick, int x, int y, UINT
keyFlags);
void MyWnd_OnLButtonUp(HWND hwnd, int x, int y, UINT keyFlags);

The rest of the code in this example is in MYAPP.C, which contains the window procedure and the
individual message handlers. With message crackers, the function of the window procedure is
principally to route each message to the appropriate handler.

Both the WM_LBUTTONDOWN and WM_LBUTTONDBLCLK messages map to the
MyWnd_OnLButtonDown procedure. This mapping is one of the special cases of message handling
described in Handling Special Cases of Messages.

// MYAPP.C
--

// MyWnd window procedure implementation.
//
LONG WINAPI MyWnd_WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM Param)
{
 switch (msg)
 {
 HANDLE_MSG(hwnd, WM_MOUSEMOVE,MyWnd_OnMouseMove);
 HANDLE_MSG(hwnd, WM_LBUTTONDOWN, MyWnd_OnLButtonDown);
 HANDLE_MSG(hwnd, WM_LBUTTONDBLCLK, MyWnd_OnLButtonDown);
 HANDLE_MSG(hwnd, WM_LBUTTONUP, MyWnd_OnLButtonUp);
 default:
 return MyWnd_DefProc(hwnd, msg, wParam, lParam);
 }
}

// Message handler function implementations:
//
void MyWnd_OnMouseMove(HWND hwnd, int x, int y, UINT keyFlags)

{
 .

.

.
return FORWARD_WM_MOUSEMOVE(hwnd, x, y, keyFlags, MyWnd_DefProc);

}

void MyWnd_OnLButtonDown(HWND hwnd, BOOL fDoubleClick, int x, int y, UINT
keyFlags)
{
 .

.

.
return FORWARD_WM_LBUTTONDOWN(hwnd, fDoubleClick, x, y, keyFlags,

MyWnd_DefProc);
}

void MyWnd_OnLButtonUp(HWND hwnd, int x, int y, UINT keyFlags)
{
 .

.

.
return FORWARD_WM_LBUTTONUP(hwnd, x, y, keyFlags, MyWnd_DefProc);

}

Note that the symbol MyWnd_DefProc is defined to represent DefWindowProc. The purpose of this
definition is to make code more reusable. This approach assumes you have a similar definition in each
application. For example, in an MDI child control procedure, you would have this definition:

#define MyWnd_DefProc DefMDIChildProc
If you then copied your message handler to the MDI procedure, you would only need to change the
prefix in MyWnd_DefProc to make the code you copied work correctly. Conversely, if your code used
the explicit call to DefWindowProc, it could create a bug that would be difficult to track down when
copied to the MDI code.

 Handling Special Cases of Messages

As a general rule, there is one set of message crackers for each message: a message decoder and a
message forwarder. Another rule is that each message handler you write should return the same value
that your code would normally return for that message. The following messages present exceptions to
these rules:

Message
handler

Comment

OnCreate,
OnNCCreate

BOOL return type: return TRUE if there are no errors. If
FALSE is returned, a window will not be created.

OnKey Handles both key up and key down messages. The extra
parameter fDown indicates whether the key is down or
up.

OnLButtonDow
n,
OnRButtonDow
n

Handles both click (button down) and double-click
messages. The extra parameter fDoubleClick indicates
whether the message received is a double-click
message.

OnChar This handler is passed only by character, and not the
virtual key or key flags information.

 Writing Message Crackers for User-Defined Messages

You can use message crackers with window messages that you define, but you must write your own
macros. The easiest way to do this is to copy and modify existing macros from WINDOWSX.H.

To understand how to write these macros, consider some of the message crackers defined in
WINDOWSX.H:

/* BOOL Cls_OnCreate(HWND hwnd, CREATESTRUCT FAR* lpCreateStruct) */

#define HANDLE_WM_CREATE(hwnd, wParam, lParam, fn) \
 ((fn)(hwnd, (CREATESTRUCT FAR*)lParam) ? 0L : (LRESULT)-1L)

#define FORWARD_WM_CREATE(hwnd, lpCreateStruct, fn) \
 (BOOL)(DWORD)(fn)(hwnd, WM_CREATE, 0, (LPARAM)lpCreateStruct)

The message decoder (HANDLE_msg) should be defined as a function call, (fn), followed by hwnd and
other parameters derived from wParam and lParam. The message forwarder (FORWARD_msg)
performs the reverse operation on the parameters, putting information back together to restore wParam
and lParam before making the function call (fn). Each of these macros must cast the return value so
that the correct type is returned.

When calling the message crackers you write, be careful about variable message values. If your
message value is a constant (such as WM_USER+100), you can use HANDLE_MSG with the
message in a switch statement. However, if the message is registered with
RegisterWindowMessage, it assigns a number at run time. In this situation, you can't use
HANDLE_MSG, because variables cannot be used as case values. You must handle the message
separately, in an if statement:

// In MyWnd class initialization code:
//
UINT WM_NEWMESSAGE= 0;

WM_NEWMESSAGE= RegisterWindowMessage("WM_NEWMESSAGE");
.
.
.
// In MyWnd_WndProc(): window procedure:
//
LONG WINAPI MyWnd_WndProc(HWND hwnd, WORD msg, WPARAM wParam,
 LPARAM lParam)
{
 if (msg == WM_NEWMESSAGE)
 HANDLE_WM_NEWMESSAGE(hwnd, wParam, lParam, MyWnd_OnNewMessage);

 switch (msg)
 {
 HANDLE_MSG(hwnd, WM_MOUSEMOVE, MyWnd_OnMouseMove);
 .

.

.
}

 Adapting Message Crackers to Special Cases

Message crackers can generally be used with all types of application code. However, certain situations
require modifications in coding style.

Dialog Procedures, Window Subclassing, and Window Instance Data    show how to adapt message-
cracker coding techniques for dialog procedures, window subclassing, and window instance data.

 Dialog Procedures

Dialog procedures return a BOOL value to indicate whether the message was processed. (Window
procedures, in contrast, return a LONG value rather than a BOOL.) Therefore, to adapt a message
cracker to dialog-procedure code, you must call the message handler and cast the value to BOOL.

Because you have to insert the (BOOL) cast, you can't use HANDLE_MSG. You must invoke the
message-decoder macro explicitly. Here's an example that shows how you'd use message crackers in
a dialog procedure:

BOOL MyDlg_OnInitDialog(HWND hwndDlg, HWND hwndFocus, LPARAM lParam);
void MyDlg_OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify);

BOOL WINAPI MyDlg_DlgProc(HWND hwndDlg, UINT msg, WPARAM wParam, LPARAM
lParam)
{
 switch (msg)
 {
 //
 // Since HANDLE_WM_INITDIALOG returns an LRESULT,
 // we must cast it to a BOOL before returning.
 //
 case WM_INITDIALOG:
 return (BOOL)HANDLE_WM_INITDIALOG(hwndDlg, wParam, lParam,
MyDlg_OnInitDialog);

 case WM_COMMAND:
 HANDLE_WM_COMMAND(hwndDlg, wParam, lParam, MyDlg_OnCommand);
 return TRUE;
 break;

 default:
 return FALSE;
 }
}

 Window Subclassing

When you use message crackers with a subclassed window procedure, the strategy described earlier
for using message forwarders does not work. Recall that this strategy involves the following macro call:

return FORWARD_msg(parmlist, defaultMsgProc);

This use of a message forwarder (FORWARD_msg) calls defaultMsgProc directly. But in a subclassed
window procedure, you must call the window procedure of the superclass by using the API function
CallWindowProc. The problem is that FORWARD_msg calls the defaultMsgProc with four
parameters, but CallWindowProc needs five parameters.

The solution is to write an intermediate procedure. For example, the intermediate procedure could be
named test_DefProc:

 FORWARD_WM_CHAR(hwnd, ch, cRepeat, test_DefProc);

The test_DefProc function calls CallWindowProc and prepends the address of the superclass function
(in this case, test_lpfnwpDefProc) to the parameter list:

LONG test_DefProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

return CallWindowProc(test_lpfnwpDefProc, hwnd, msg, wParam, lParam);
}

You need to write just one such procedure for each subclassed window in your application. Each time
you use a message forwarder, you give this intermediate procedure as the function address instead of
DefWindowProc. The following example code shows the complete context:

// Global variable that holds the previous window proc address of
// the subclassed window:
//
WNDPROC test_lpfnwpDefProc = NULL;

// Code fragment to subclass a window and store previous wndproc value:
//
void Subclasstest(HWND hwndtest)
{
 extern HINSTANCE g_hinsttest; // Global application instance handle

 // SubclassWindow() is a macro API that calls SetWindowLong()
 // as appropriate to change the window proc of hwndtest.
 //
 test_lpfnwpDefProc = SubclassWindow(hwndtest,
 (WNDPROC)MakeProcInstance((FARPROC)test_WndProc, g_hinsttest));

.

.

.}

// Default message handler function
//
// This function invokes the superclasses' window procedure. It
// must be declared with the same signature as any window proc,
// so it can be used with the FORWARD_WM_* macros.
//
LONG test_DefProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
 return CallWindowProc(test_lpfnwpDefProc, hwnd, msg, wParam, lParam);
}
// test window procedure. Everything here is the same as in the
// normal non-subclassed case: the differences are encapsulated in
// test_DefProc.
//
LONG WINAPI test_WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
 switch (msg)
 {
 HANDLE_MSG(hwnd, WM_CHAR, test_OnChar);
 .

.

.
 default:
 //
 // Be sure to call test_DefProc(), NOT DefWindowProc()!
 //
 return test_DefProc(hwnd, msg, wParam, lParam);
 }
}

// Message handlers
//
void test_OnChar(HWND hwnd, UINT ch, int cRepeat)
{
 if (ch == testvalue)
 {
 // handle it here
 }
 else
 {
 // Forward the message on to test_DefProc
 //
 FORWARD_WM_CHAR(hwnd, ch, cRepeat, test_DefProc);
 }
}

 Window Instance Data

It is common for a window to have user-declared state variables (or "instance data") kept in a separate
data structure allocated by the application. You associate this data structure with its corresponding
window by storing a pointer to the structure in a specially named window property or in a window word
(allocated by setting the cbWndExtra field of the WNDCLASS structure when the class is registered).

Message crackers can be adapted to work with this use of instance data. Place the hwnd of the
window in the first member of the structure. Then, in the message decoders (HANDLE_msg macros),
pass the address of the structure instead of the hwnd. The message handler now gets a pointer to the
structure instead of the hwnd, but it can access the hwnd through indirection. You may need to rewrite
some of the message handler to make it use indirection to access the window handle.

The following example illustrates this technique:

// Window instance data structure. Must include window handle field.
//
typedef struct _test
{
 HWND hwnd;
 int otherStuff;
} test;

// "test" window class was registered with cbWndExtra = sizeof(test*), so we
// can use a window word to store back pointer. Window properties can also
// be used.
//
// These macros get and set the pointer to the instance data corresponding
to the
// window. Use GetWindowWord or GetWindowLong as appropriate based on the
default
// size of data pointers.
//
#ifdef WIN32
#define test_GetPtr(hwnd) (test*)GetWindowLong((hwnd), 0)
#define test_SetPtr(hwnd, ptest) (test*)SetWindowLong((hwnd), 0, (LONG)
(ptest))
#else
#define test_GetPtr(hwnd) (test*)GetWindowWord((hwnd), 0)
#define test_SetPtr(hwnd, ptest) (test*)SetWindowWord((hwnd), 0, (WORD)
(ptest))
#endif

// Default message handler

#define test_DefProc DefWindowProc

// Message handler functions, declared with a test* as their first argument,
// rather than an HWND. Other than that, their signature is identical to
// that shown in WINDOWSX.H.
//
BOOL test_OnCreate(test* ptest, CREATESTRUCT FAR* lpcs);
void test_OnPaint(test* ptest);

//
// Code to register the test window class:
//
BOOL test_Init(HINSTANCE hinst)
{
 WNDCLASS cls;

 cls.hCursor = ...;
 cls.hIcon = ...;
 cls.lpszMenuName = ...;
 cls.hInstance = hinst;
 cls.lpszClassName = "test";
 cls.hbrBackground = ...;
 cls.lpfnWndProc = test_WndProc;
 cls.style = CS_DBLCLKS;
 cls.cbWndExtra = sizeof(test*); // room for instance data ptr
 cls.cbClsExtra = 0;

 return RegisterClass(&cls);
}

// The window proc for class "test". This demonstrates how instance data is
// attached to a window and passed to the message handler functions.
//
LRESULT CALLBACK test_WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam)
{
 test* ptest = test_GetPtr(hwnd);

 if (ptest == NULL)
 {
 // If we're creating the window, then try to allocate it.
 //
 if (msg == WM_NCCREATE)
 {
 // Create the instance data structure, set up the hwnd
backpointer
 // field, and associate it with the window.
 //
 ptest = (test*)LocalAlloc(LMEM_FIXED | LMEM_ZEROINIT,
sizeof(test));

 // If an error occured, return 0L to fail the CreateWindow call.
 // This will cause CreateWindow() to return NULL.
 //
 if (ptest == NULL)
 return 0L;

 ptest->hwnd = hwnd;
 test_SetPtr(hwnd, ptest);

 // NOTE: the rest of the test structure should be initialized
 // inside of Template_OnCreate() (or Template_OnNCCreate()).
Further
 // creation data may be accessed through the CREATESTRUCT FAR*
parameter.
 //
 }
 else
 {
 // It turns out WM_NCCREATE is NOT necessarily the first message
 // received by a top-level window (WM_GETMINMAXINFO is).
 // Pass messages that precede WM_NCCREATE on through to
 // test_DefProc
 //
 return test_DefProc(hwnd, msg, wParam, lParam);
 }
 }

 if (msg == WM_NCDESTROY)
 {
 LocalFree((HLOCAL)ptest);

 ptest = NULL;
 test_SetPtr(hwnd, NULL);

 }

 switch (msg)
 {
 HANDLE_MSG(ptest, WM_CREATE, test_OnCreate);
 HANDLE_MSG(ptest, WM_PAINT, test_OnPaint);
 ...

 default:
 return test_DefProc(hwnd, msg, wParam, lParam);
 }
}

 Using Control Message Functions

The control message API functions perform a role that is the converse of message crackers: instead of
handling messages sent to your window, they send messages to other windows (controls).

Each of the control message functions packs parameters into the appropriate wParam/lParam format
and then calls SendMessage. These functions offer the same portability advantages that message
crackers do; they free you from having to know how the current operating system packs wParam and
lParam.

The function calls also improve readability of code and support better type checking. When used with
the STRICT enhancements, the control message functions help prevent incorrect passing of message
parameters.

To see how the control message functions work, first look at the following source code, which makes
two calls to SendMessage to print all the lines in an edit control:

void PrintLines(HWND hwndEdit, WHND hwndDisplay)
{
 int line;
 int lineLast = (int)SendMessage(hwndEdit, EM_GETLINECOUNT, 0, 0L);

 for (line = 0; line < lineLast; line++)
 {
 int cch;
 char ach[80];

 *((LPINT)ach) = sizeof(ach);
 cch = (int)SendMessage(hwndEdit, EM_GETLINE,
 line, (LONG)(LPSTR)ach);

 PrintInWindow(ach, hwndDisplay);
 }
}

The source code below uses two control message functions, Edit_GetLineCount and Edit_GetLine,
to perform the same task. This version of the code is shorter, easier to read, doesn't generate compiler
warnings, and doesn't have any non-portable casts:

void PrintLines(HWND hwndEdit, WHND hwndDisplay)
{
 int line;
 int lineLast = Edit_GetLineCount(hwndEdit);

 for (line = 0; line < lineLast; line++)
 {
 int cch;
 char ach[80];

 cch = Edit_GetLine(hwndEdit, line, ach, sizeof(ach));

 PrintInWindow(ach, hwndDisplay);
 }
}

The control message API functions are listed in the table below. For more information, refer to the
macro definitions in WINDOWSX.H and the documentation for the corresponding window message.

Control Message API Functions
Control Group Functions
Static Text
Controls:

Static_Enable(hwnd, fEnable)

Static_GetIcon(hwnd, hIcon)
Static_GetText(hwnd, lpch, cchMax)
Static_GetTextLength(hwnd)
Static_SetIcon(hwnd, hIcon)
Static_SetText(hwnd, lpsz)

Button Controls: Button_Enable(hwnd, fEnable)
Button_GetCheck(hwnd)
Button_GetState(hwnd)
Button_GetText(hwnd, lpch, cchMax)
Button_GetTextLength(hwnd)
Button_SetCheck(hwnd, check)
Button_SetState(hwnd, state)
Button_SetStyle(hwnd, style, fRedraw)
Button_SetText(hwnd, lpsz)

Edit Controls: Edit_CanUndo(hwnd)
Edit_EmptyUndoBuffer(hwnd)
Edit_Enable(hwnd, fEnable)
Edit_FmtLines(hwnd, fAddEOL)
Edit_GetFirstVisible(hwnd)
Edit_GetHandle(hwnd)
Edit_GetLine(hwnd, line, lpch, cchMax)
Edit_GetLineCount(hwnd)
Edit_GetModify(hwnd)
Edit_GetRect(hwnd, lprc)
Edit_GetSel(hwnd)
Edit_GetText(hwnd, lpch, cchMax)
Edit_GetTextLength(hwnd)
Edit_LimitText(hwnd, cchMax)
Edit_LineFromChar(hwnd, ich)
Edit_LineIndex(hwnd, line)
Edit_LineLength(hwnd, line)
Edit_ReplaceSel(hwnd, lpszReplace)
Edit_Scroll(hwnd, dv, dh)
Edit_SetHandle(hwnd, h)
Edit_SetModify(hwnd, fModified)
Edit_SetPasswordChar(hwnd, ch)
Edit_SetRect(hwnd, lprc)
Edit_SetRectNoPaint(hwnd, lprc)

Edit_SetSel(hwnd, ichStart, ichEnd)
Edit_SetTabStops(hwnd, cTabs, lpTabs)
Edit_SetText(hwnd, lpsz)
Edit_SetWordBreak(hwnd, lpfnWordBreak)
Edit_Undo(hwnd)

Scroll Bar Controls: ScrollBar_Enable(hwnd, flags)
ScrollBar_GetPos(hwnd)
ScrollBar_GetRange(hwnd, lpposMin, lpposMax)
ScrollBar_SetPos(hwnd, pos, fRedraw)
ScrollBar_SetRange(hwnd, posMin, posMax,
fRedraw)
ScrollBar_Show(hwnd, fShow)

List Box Controls: ListBox_AddFile(hwnd, lpszFilename)
ListBox_AddItemData(hwnd, data)
ListBox_AddString(hwnd, lpsz)
ListBox_DeleteString(hwnd, index)
ListBox_Dir(hwnd, attrs, lpszFileSpec)
ListBox_Enable(hwnd, fEnable)
ListBox_FindItemData(hwnd, indexStart, data)
ListBox_FindString(hwnd, indexStart, lpszFind)
ListBox_GetAnchorIndex(hwnd)
ListBox_GetCaretIndex(hwnd)
ListBox_GetCount(hwnd)
ListBox_GetCurSel(hwnd)
ListBox_GetHorizontalExtent(hwnd)
ListBox_GetItemData(hwnd, index)
ListBox_GetItemHeight(hwnd, index) (1)

ListBox_GetItemRect(hwnd, index, lprc)
ListBox_GetSel(hwnd, index)
ListBox_GetSelCount(hwnd)
ListBox_GetSelItems(hwnd, cItems, lpIndices)
ListBox_GetText(hwnd, index, lpszBuffer)
ListBox_GetTextLen(hwnd, index)
ListBox_GetTopIndex(hwnd)
ListBox_InsertItemData(hwnd, lpsz, index)
ListBox_InsertString(hwnd, lpsz, index)
ListBox_ResetContent(hwnd)
ListBox_SelectItemData(hwnd, indexStart, data)
ListBox_SelectString(hwnd, indexStart, lpszFind)
ListBox_SelItemRange(hwnd, fSelect, first, last)
ListBox_SetAnchorIndex(hwnd, index)
ListBox_SetCaretIndex(hwnd, index)

ListBox_SetColumnWidth(hwnd, cxColumn)
ListBox_SetCurSel(hwnd, index)
ListBox_SetHorizontalExtent(hwnd, cxExtent)
ListBox_SetItemData(hwnd, index, data)
ListBox_SetItemHeight(hwnd, index, cy) (1)

ListBox_SetSel(hwnd, fSelect, index)
ListBox_SetTabStops(hwnd, cTabs, lpTabs)
ListBox_SetTopIndex(hwnd, indexTop)

Combo Box
Controls:

ComboBox_AddItemData(hwnd, data)

ComboBox_AddString(hwnd, lpsz)
ComboBox_DeleteString(hwnd, index)
ComboBox_Dir(hwnd, attrs, lpszFileSpec)
ComboBox_Enable(hwnd, fEnable)
ComboBox_FindItemData(hwnd, indexStart, data)
ComboBox_FindString(hwnd, indexStart,
lpszFind)
ComboBox_GetCount(hwnd)
ComboBox_GetCurSel(hwnd)
ComboBox_GetDroppedControlRect(hwnd, lprc)

(1)

ComboBox_GetDroppedState(hwnd) (1)

ComboBox_GetEditSel(hwnd)
ComboBox_GetExtendedUI(hwnd) (1)

ComboBox_GetItemData(hwnd, index)
ComboBox_GetItemHeight(hwnd)
ComboBox_GetLBText(hwnd, index, lpszBuffer)
ComboBox_GetLBTextLen(hwnd, index)
ComboBox_GetText(hwnd, lpch, cchMax)
ComboBox_GetTextLength(hwnd)
ComboBox_InsertItemData(hwnd, index, data)
ComboBox_InsertString(hwnd, index, lpsz)
ComboBox_LimitText(hwnd, cchLimit)
ComboBox_ResetContent(hwnd)
ComboBox_SelectItemData(hwnd, indexStart,
data)
ComboBox_SelectString(hwnd, indexStart,
lpszSelect)
ComboBox_SetCurSel(hwnd, index)
ComboBox_SetEditSel(hwnd, ichStart, ichEnd)
ComboBox_SetExtendedUI(hwnd, flags) (1)

ComboBox_SetItemData(hwnd, index, data)
ComboBox_SetItemHeight(hwnd, cyItem) (1)

ComboBox_SetText(hwnd, lpsz)

ComboBox_ShowDropdown(hwnd, fShow)
1 Supported only for Win32, not for Windows 3.x. These functions are not available if you
define the symbol WINVER as equal to 0x0300, on the command line or with a #define
statement.

 Writing Portable C Programs

Because C compilers exist on a variety of computers, some C applications developed for one computer
system can be ported to other systems. However, some aspects of language behavior depend on how
a particular C compiler is implemented and how a specific computer operates. Therefore, when
designing a program to be ported to another system, it is important that you examine programming
assumptions. This guide describes those assumptions that can affect writing portable programs.

The American National Standards Institute Standard for the C Language (the ANSI Standard) details
every instance where language behavior is defined by the implementation.

 Assumptions About Hardware

To make C programs portable, you must examine two aspects of your code: hardware assumptions
and compiler dependency. This guide deals with hardware assumptions. Assumptions About the
Compiler deals with compiler dependency.

 Size of Basic Types

In C, the size of basic types (char, signed int, unsigned int, float, double, and long double) is
implementation-defined, so relying on a particular data type to be a given size reduces the portability of
a program.

Because the size of basic types is left to the implementation, do not make assumptions about the size
or alignment of data types within aggregate types. You should always use the sizeof operator to
determine the size or amount of storage required for a variable or a type.

The following topics discuss rules governing the size of specific data types.

· Type char
· Type int and Type short int
· Type float, Type double, and Type long double
· Microsoft C Type Sizes

 Type Char

Type char is the smallest of the basic types, but it must be large enough to hold any of the characters
in the implementation's basic character set. Normally, variables of type char are 1 byte.

 Type Int and Type Short Int

Type int often corresponds to the register size of the target computer. Type short int may be less than
or equal to the size of type int. Both int and short are greater than or equal to the size of type char but
less than or equal to the size of type long.

If you assume that type int is a certain size, your code may not be portable because:

· An int can be defined as a 16-bit (2-byte) or a 32-bit quantity.
· An int is not always large enough to hold array indexes. For large arrays, you must use unsigned

int; for extremely large arrays, use long or unsigned long. To be certain your code is portable,
define your array indexes as type size_t. You may not know, before porting your code, the maximum
value to expect an array index of type int to hold. The file LIMITS.H contains manifest constants,
listed below, for the maximum and minimum values of each basic integral type.

Constant Value
CHAR_BIT Number of bits in a variable of type char
CHAR_MIN Minimum value a variable of type char can hold
CHAR_MAX Maximum value a variable of type char can hold
SCHAR_MIN Minimum value a variable of type signed char can hold
SCHAR_MAX Maximum value a variable of type signed char can hold
UCHAR_MAX Maximum value a variable of type unsigned char can

hold
SHRT_MIN Minimum value a variable of type short can hold
SHRT_MAX Maximum value a variable of type short can hold
USHRT_MAX Maximum value a variable of type unsigned short can

hold
INT_MIN Minimum value a variable of type int can hold
INT_MAX Maximum value a variable of type int can hold
UINT_MAX Maximum value a variable of type unsigned int can

hold
LONG_MIN Minimum value a variable of type long can hold
LONG_MAX Maximum value a variable of type long can hold
ULONG_MAX Maximum value a variable of type unsigned long can

hold

 Type Float, Type Double, and Type Long Double

Type float is the smallest of the basic floating-point types. Type double is usually larger than type
float, and type long double is usually the largest of the floating-point types. You can make the
following portability assumptions about floating-point types:

· Any value that can be represented as type float can be represented as type double (type float is a
subset of type double).

· Any value that can be represented as type double can be represented as type long double (type
double is a subset of type long double).

The file FLOAT.H contains manifest constants, listed below, for the maximum and minimum values of
each basic floating-point type.

Constant Value
DBL_DIG Number of decimal digits of precision a variable of

type double can hold
DBL_MAX Maximum value a variable of type double can hold
DBL_MAX_10_EXP Maximum value (base 10) the exponent of a

variable of type double can hold
DBL_MAX_EXP Maximum value (base 2) the exponent of a variable

of type double can hold
DBL_MIN Minimum positive value a variable of type double

can hold
DBL_MIN_10_EXP Minimum value (base 10) the exponent of a

variable of type double can hold
DBL_MIN_EXP Minimum value (base 2) the exponent of a variable

of type double can hold
FLT_DIG Number of decimal digits of precision a variable of

type float can hold
FLT_MAX Maximum value a variable of type float can hold
FLT_MAX_10_EXP Maximum value (base 10) the exponent of a

variable of type float can hold
FLT_MAX_EXP Maximum value (base 2) the exponent of a variable

of type float can hold
FLT_MIN Minimum positive value a variable of type float can

hold
FLT_MIN_10_EXP Minimum value (base 10) the exponent of a

variable of type float can hold
FLT_MIN_EXP Minimum value (base 2) the exponent of a variable

of type float can hold
LDBL_DIG Number of decimal digits of precision a variable of

type long double can hold
LDBL_MAX Maximum value a variable of type long double can

hold
LDBL_MAX_10_EX
P

Maximum value (base 10) the exponent of a
variable of type long double can hold

LDBL_MAX_EXP Maximum value (base 2) the exponent of a variable
of type long double can hold

LDBL_MIN Minimum positive value a variable of type long
double can hold

LDBL_MIN_10_EXP Minimum value (base 10) the exponent of a
variable of type long double can hold

LDBL_MIN_EXP Minimum value (base 2) the exponent of a variable
of type long double can hold

 Microsoft C Type Sizes

The following table summarizes the size of the basic types in Microsoft C:

Size of Basic Types in Microsoft C
Type Number of bytes
char, unsigned char 1
short, unsigned
short

2

int, unsigned int 2 or 4 (*)

near pointer 2 or 4 (*)

long, unsigned long 4
far pointer 4
float 4
double 8
long double 10
* These data types have different sizes in 16- and 32-bit environments.

 Storage Order and Alignment

The C language does not define any specific layout for the storage of data items relative to one
another. The layout for storage of structure elements, or unions within a structure or union, is defined
by the implementation.

Some processors require that data longer than 1 byte be aligned to 2-byte or 4-byte boundaries. Other
processors, such as the 80x86 family, do not have such a restriction. However, the 80x86 processors
work more efficiently with aligned data.

Most RISC processors expect each piece of data in memory to be aligned on a boundary appropriate
to its size. For example, an n-byte integer can be aligned on a boundary whose address is a multiple of
n-bytes, up to a maximum of 8 bytes. This restriction permits the memory system to run much faster.

Ordinarily, alignment has no effect on correctly written programs because the compiler inserts unused
space ("padding") between variables wherever necessary to conform to the rules.

 Structure Order and Alignment

The following example illustrates how alignment can affect your program. In the example, a structure is
cast to type long because the programmer knew the order in which a particular implementation stored
data.

/* Nonportable code */
struct time
{
 char hour; /* 0 < hour < 24 ¾ fits in a char */
 char minute; /* 0 < minute < 60 ¾ fits in a char */
 char second; /* 0 < second < 60 ¾ fits in a char */
};

 .
 .
 .
 struct time now, alarm_time;
 .
 .
 .
 if (*(long *)&now >= *(long *)&alarm_time)
 {
 /* sound an alarm */
 }

The preceding code makes these nonportable assumptions:

· The data for hour will be stored in a higher order position than minute or second. Because C does
not guarantee storage order or alignment of structures or unions, the code may not be portable to
other computers.

· Three variables of type char will be shorter than or the same length as a variable of type long. Thus,
the code is not portable according to the rules governing the size of basic types, as described in
Size of Basic Types.

If either of these assumptions proves false, the comparison (if statement) is invalid.

To make the program in the preceding example portable, you can break the comparison between the
two long integers into a component-by-component comparison. This technique is illustrated in the
following example:

/* Portable code */
struct time
{
 char hour; /* 0 < hour < 24 ¾ fits in a char */
 char minute; /* 0 < minute < 60 ¾ fits in a char */

 char second; /* 0 < second < 60 ¾ fits in a char */
};

 .
 .
 .
 struct time now, alarm_time;
 .
 .
 .
 if (time_cmp(now, alarm_time) >= 0)
 {
 /* sound an alarm */
 }
 .
 .
 .

int time_cmp(struct time t1, struct time t2)
{
 if(t1.hour != t2.hour)
 return(t2.hour - t1.hour);
 if(t1.minute != t2.minute)
 return(t2.minute - t1.minute);
 return(t2.second - t1.second);
}

Even a program that follows the rules given previously may have trouble when writing data on one
computer and reading it on another. In addition to padding, computers differ with regard to endian-
ness, floating-point formats, and size of data types. If I/O speed is not important, a possible solution is
to use ASCII files rather than binary ones.

 Union Order and Alignment

Programmers use unions most often for two purposes: to store data whose exact type is not known
until run time or to access the same data in different ways.

Unions falling into the second category are usually not portable. For example, the following union is not
portable:

union tag_u
{

char bytes_in_long[4];
long a_long;

};

The intent of the preceding union is to access the individual bytes of a variable of type long. However,
the union may not work as intended when ported to other computers because:

· It relies on a constant size for type long.
· It may assume byte ordering within a variable of type long. (Byte ordering is described in detail in

Byte Order in a Word.)

 Byte Order in a Word

The order of bytes within an integral type longer than a byte (short, int, or long) can vary among
computers. Computers that number the bytes from left to right with the least-significant byte within a
word being byte zero are called "little-endian." Computers that number the bytes from left to right with
the least-significant byte being byte 3 are called "big-endian." Code that assumes an internal order is
not portable, as shown by this example:

/*
 * Nonportable structure to access an int in bytes.
 */
struct tag_int_bytes
{
 char lobyte;
 char hibyte;
};

A more portable way to access the individual bytes in a word is to define two macros that rely on the
constant CHAR_BIT, defined in LIMITS.H:

#define LOBYTE(a) (char)((a) & 0xff)
#define HIBYTE(a) (char)((unsigned)(a) >> CHAR_BIT)

The LOBYTE macro is still not completely portable. It assumes that a char is 8 bits long, and it uses
the constant 0xff to mask the high-order 8 bits. Because portable programs cannot rely on a given
number of bits in a byte, consider the revision below:

#define LOBYTE(a) (char)((a) & ((unsigned)~0>>CHAR_BIT))
#define HIBYTE(a) (char)((unsigned)(a) >> CHAR_BIT)

This revised LOBYTE macro performs a bitwise complement on 0; that is, all zero bits are turned into
ones. The macro then takes that unsigned quantity and shifts it right far enough to create a mask of the
correct length for the implementation.

The following code assumes that the order of bytes in a word will be least-significant first:

int c;
.
.
.
fread(&c, sizeof(char), 1, fp);

The code attempts to read one byte as an int, without converting it from a char. However, the code will
fail in any implementation where the low-order byte is not the first byte of an int. The following solution
is more portable. In this example, the data is read into an intermediate variable of type char before
being assigned to the integer variable:

int c;
char ch;
.
.
.
fread(&ch, sizeof(char), 1, fp);
c = ch;

The following example shows how to use the C run-time function fgetc to return the value. The fgetc
function returns type char, but the value is promoted to type int when it is assigned to a variable of

type int:

int c;
.
.
.
c = fgetc(fp);

You might create porting problems by placing small objects side by side to make a bigger object, or
splitting a big object into several small objects. For example, the following code that reads and
compares a pair of short integers is computer-dependent because on some computers the 0th element
of the array represents the high-order half of the word rather than the low-order half:

char carr[BUFSIZ];
err = read(0, carr, 4);
if ((carr[0] | (carr[1] << 8)) > (carr[2] | (carr[3] << 8))
...

There is never a problem if you use the correct data type and let the compiler deal with the order of the
bytes:

short sarr[BUFSIZ];
err = read(0, (char *) sarr, 2 * sizeof(short));
if (sarr[0] > sarr[i])
...

Microsoft C Specific
Microsoft C normally aligns data types longer than one byte to an even-byte address for improved
performance. See the /Zp compiler option.

 Floating-Point Accuracy

Some compilers use extended precision even when your program does not specify it because it is
more natural for the design of the processor to use the extended precision. When an expression is
evaluated using extended precision, you may get a slightly different answer than if it were evaluated in
double precision. Intel 80x87 math coprocessors use 80-bit precision for calculations, whereas RISC
processors often use 64-bit precision.

In addition to differences resulting from hardware, each implementation typically differs in the
algorithms and characteristics of its math library. Even IEEE computers that are otherwise identical
may produce different results due to differences in math libraries.

 Reading and Writing Structures

Many C programs read data from disk into structures and write data to disk from structures. The
functions that perform disk I/O in C require you to specify the number of bytes to be transferred. You
should always use the sizeof operator to obtain the size of the data to be read or written, because
differing data type sizes or alignment schemes may alter the size of a given structure. The following
code shows one such use of the sizeof operator:

fread(&my_struct, sizeof(my_struct), 1, fp);

Microsoft C Specific
When performing disk input and output in Microsoft C, structures may be different sizes depending on
the structure-packing option you have selected. See the /Zp compiler option.

 Bit Fields in Structures

The Microsoft C compiler implements bit fields. However, many C compilers do not.

Bit fields allow you to access the individual bits within a data item. While the practice of accessing the
bits in a data item is inherently nonportable, you can improve your chances of porting a program that
uses bit fields if you make no assumptions about order of assignment, or size and alignment of bit
fields.

 Order of Assignment

Because the order of assignment of bit fields in memory is left to the implementation, you cannot rely
on a particular entry in a bit field structure to be in a higher order position than another. (This problem is
similar to the portability constraint imposed by alignment of basic data types in structures. The C
language does not define any specific layout for the storage of data items relative to one another.) See
Storage Order and Alignment for more information.

 Size and Alignment of Bit Fields

The Microsoft C compiler supports bit fields up to the size of the type long. Each individual member of
the bit field structure can be up to the size of the declared type. Some compilers do not support bit field
structure elements that are longer than type int.

The following example defines a bit field, short_bitfield, that is shorter than type int:

struct short_bitfield
{
 unsigned usr_bkup : 1; /* 0 <= usr_bkup < 1 */
 unsigned usr_sec : 4; /* 9 <= usr_sec < 16 */
};

The following example defines a bit field, long_bitfield, that has an element longer than type int in a
16-bit environment:

struct long_bitfield
{
 unsigned long disk_pos : 22; /* 0 <= disk_pos < 4,194,304 */
 unsigned long rec_no : 10; /* 0 <= rec_no < 1,024 */
};

The bit field short_bitfield is likely to be supported by more implementations than long_bitfield.

Microsoft C Specific
The following example introduces another portability issue: alignment of data defined in bit fields.

struct long_bitfield
{
 unsigned int day : 5; /* 0 <= day < 32 */
 unsigned int month : 4; /* 0 <= month < 16 */
 unsigned int year : 11; /* 0 <= year < 2048 */
};

In the 32-bit environment, all three elements can fit within a single 32-bit int, so there is no gap
between any of the elements in Microsoft C's representation of the structure. Microsoft C for the 16-bit
environment, by contrast, uses a word size of 16 bits. Because the compiler does not allow structure
elements to cross a word boundary, there is a 7-bit gap between the second and third elements in the
16-bit environment.

 Processor Arithmetic Mode

Two types of arithmetic are common on digital computers: one's-complement arithmetic and two's-
complement arithmetic. Some programs assume that all target computers perform two's-complement
arithmetic. If you take advantage of the fact that a given operation causes a particular bit pattern to be
set on either a one's-complement or two's-complement computer, your program will not be portable.
For example, two's-complement computers represent the 8-bit integer value -1 as a binary 11111111. A
one's-complement computer represents the same decimal value (-1) as 11111110. Some programmers
assume that -1 will fill a byte or a word with ones, and they use it to construct a mask template that
they later shift. This will not work correctly on one's-complement computers, but the error will not
surface until the least-significant bit is used.

In two's-complement arithmetic, there is only one value that represents zero. In one's-complement
arithmetic, there is a value for zero and a value for negative zero. Use the C relational operators to
handle this anomaly correctly; if you write code that deliberately circumvents the C relational operators,
tests for zero or NULL may not operate correctly.

Microsoft C Specific
Microsoft C uses two's-complement arithmetic exclusively.

 Pointers

One of the most powerful but potentially dangerous features of the C language is its use of indirect
addressing through pointers. Bugs introduced by misusing pointers can be difficult to detect and isolate
because the error often corrupts memory unpredictably.

 Casting Pointers

Be sure you do not make nonportable assumptions when casting pointers to different types. The
following code is nonportable because using a cast to change an array of char to a pointer of type long
assumes a particular byte-ordering scheme. This is discussed in greater detail in Byte Order in a Word.

/* Nonportable coercion */
char c[4];
long *lp;

lp = (long *)c;
*lp = 0x12345678L;

 Pointer Size

A pointer can be assigned (or cast) to any integer type large enough to hold it, but the size of the
integer type depends on the computer and the implementation. Therefore, you cannot assume that a
pointer is the same size as an integer; that is:

sizeof(char *) != sizeof(int)

To determine the size of any unmodified data pointer, use:

sizeof(void *)

This expression returns the size of a generic data pointer.

 Pointer Subtraction

Code that assumes that pointer subtraction yields an int value is nonportable. Pointer subtraction
yields a result of type ptrdiff_t (defined in STDDEF.H). Portable code must always use variables of
type ptrdiff_t for storing the result of pointer subtraction.

 The Null Pointer

In most implementations, NULL is defined as 0. In Microsoft C, it is defined as ((void *)0). Because
code pointers and data pointers are often different sizes, using 0 for the null pointer for both can lead to
nonportability. The difference in size between code pointers and data pointers causes problems for
functions that expect pointer arguments longer than an int. To avoid these problems, use the null
pointer, as defined in the include file STDDEF.H; use prototypes; or explicitly cast NULL to the correct
data type. Here is a portable way to use the null pointer:

/* Portable use of the null pointer */
main()
{
 func1((char *)NULL);
 func2((void *(*)())NULL);
}

void func1(char * c)
{
}

void func2(void *(* func)())
{
}

The invocations of func1 and func2 explicitly cast NULL to the correct size. In the case of func1,
NULL is cast to type char *; in the case of func2, it is cast to a pointer to a function that returns type
void.

Microsoft C Specific
In the 32-bit environment, support for memory models and pointers of different sizes (__near, __far,
and __huge) is removed. All pointers are 32 bits in size, and an attempt to use near pointers causes an
error. You can, however, use the /Zf option to cause the compiler to simply ignore __far pointers.

 Address Space

The amount of available memory and the address space on systems varies, depending on many
factors outside your control. A program designed with portability in mind should handle insufficient-
memory situations. To ensure that your program handles these situations, you should always check the
error return from any of the dynamic-memory-allocation routines, such as malloc, calloc, strdup, and
realloc.

 Character Set

The C language does not define the character set used in an implementation. This means that any
programs that assume the character set to be ASCII are nonportable.

 Character Classification

The standard C run-time support contains a complete set of character classification macros and
functions. These functions are defined in the CTYPE.H file and are guaranteed to be portable:

isalnum

isalpha

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

The following code fragment is not portable to implementations that do not use the ASCII character set:

/* Nonportable */
if(c >= 'A' && c <= 'Z')
 /* uppercase alphabetic */

Instead, consider using this:

/* Portable */
if(isalpha(c) && isupper(c))
 /* uppercase alphabetic */

The first example is nonportable because it assumes that uppercase A is represented by a smaller
value than uppercase Z and that no lowercase characters fall between the values of A and Z. The
second example is portable because it uses the character classification functions to perform the tests.

In a portable program, you should not perform any comparison on variables of type char except strict
equality (==). You cannot assume the character set follows an increasing sequence ¾ that may not be
true on a different computer.

 Case Translation

Translation of characters from uppercase to lowercase or from lowercase to uppercase is called case
translation. The following example shows a coding technique for case translation not portable to
implementations using a non-ASCII character set:

#define make_upper(c) ((c)&0xcf)
#define make_lower(c) ((c)|0x20)

This code takes advantage of the fact that you can map uppercase to lowercase simply by changing
the state of bit 6. It is extremely efficient but nonportable. To write portable code, use the case-
translation macros toupper and tolower (defined in CTYPE.H).

 Assumptions About the Compiler

Different compilers translate C source code into object code in different ways. The ANSI draft standard
for the C programming language defines how many of these translations must be done; others are
implementation-defined.

This guide describes assumptions about how the compiler translates your C code, which can make
your programs nonportable.

 Sign Extension

"Sign extension" is the propagation of the sign bit to fill unoccupied space when promoting to a more
significant type or when performing bitwise right-shift operations.

 Promotion from Shorter Types

Integral promotions from shorter types occur when you make an assignment, perform arithmetic,
perform a comparison, or perform an explicit cast.

The behavior of integral promotion is well defined, except for type char. The implementation defines
whether type char is treated as signed or unsigned. The following code fragment is an example of
promotion as a result of assignment:

char c1 = -3;
int i1;

i1 = c1;

In this example, the expected result of the assignment statement is that i1 will be set to -3. If the
implementation defines type char as unsigned, however, sign extension will not occur, and i1 will be
253 (on a two's-complement computer).

Promotion can also occur as a result of a comparison of different types:

char c;

if(c == 0x80)
 .
 .
 .

This comparison never evaluates as true on an implementation that sign-extends char types but treats
hexadecimal constants as unsigned. Use a character constant of the form '\x80', or explicitly cast the
constant to type char to perform the comparison correctly.

The following comparison, which is an example of promotion as a result of a cast, is also nonportable:

char c;
unsigned int u;

if(u == (unsigned)c)

There are two problems with this code:

· The char type may be treated as signed or unsigned, depending on the implementation.
· If the char type is treated as signed, it can be converted to unsigned in two ways: the char value

may first be sign-extended to int, then converted to unsigned; or the char may be converted to
unsigned char, then sign-extended to int length.

It is always safe to compare a signed int with a char constant because C requires all character
constants to be positive.

Variables of type char are promoted to type int when passed as arguments to a function. This causes
sign extension on some computers. Consider the following code:

char c = 128;

printf("%d\n", c);

Microsoft C Specific
Microsoft C allows you to treat type char as signed or unsigned. By default, a char is considered
signed, but if you change the default char type using the /J compiler option, you can treat it as

unsigned.

 Bitwise Right-Shift Operations

Positive or unsigned integral types (char, short, int, and long) yield positive or zero values after a
bitwise right-shift (>>) operation. For example,

(char)120 >> 4

yields 7,

(unsigned char)240 >> 8

yields 0,

(int)500 >> 8

yields 1, and

(unsigned int)65535 >> 4

yields 4,095.

Negative-signed integral types yield implementation-defined values after a bitwise right-shift operation.
This means that you must know whether you want to do a signed or unsigned shift, then code
accordingly.

If you don't know how the implementation performs, you might get unexpected results. For example,
(signed char)0x80 >> 3 yields 0xf0 if the implementation performs sign extension on right bitwise
shifts. If the implementation does not perform the sign extension, the result is 0x10.

You can use right shifts to speed up division when the divisor can be represented by powers of 2 and
the dividend is positive. To maintain portability, you should use the division operator.

To perform an unsigned shift, explicitly cast the data to an unsigned type. To perform a shift that
extends the sign bit, use the division operator as follows: divide by 2^ (n) , where n is the number of bits
you want to shift.

 Length and Case of Identifiers

Some implementations do not support long identifiers. Some allow only 6 characters, while others allow
as many as 32. They may report each identifier that exceeds the maximum length or truncate
identifiers to a given length. Truncation causes serious problems, especially if you have a number of
similarly named variables within the scope of a block of code, such as the following:

double acct_receivable_30_days;
double acct_receivable_60_days;
double acct_receivable_90_days;
double current_interest_rate;

acct_receivable_30_days *= current_interest_rate;

If your target system retains only six significant characters, you need to rename all your
acct_receivable variables.

Case sensitivity also affects portability. C is usually a case-sensitive language. That is,
CalculateInterest is not considered the same identifier as calculateinterest. Some systems are not
case sensitive, however, so to write portable code, differentiate your identifiers by something other than
case.

These problems with identifiers can occur in two locations: the compiler and the linker or loader. Even if
the compiler can handle long and case-differentiated identifiers, if the linker or loader cannot, you can
get duplicate definitions or other unexpected errors.

Microsoft C Specific
The Microsoft C compiler issues the /NOIGNORECASE command to the Microsoft Linker (LINK),
which directs it to consider case significant.

 Register Variables

The number and type of register variables in a function depend on the implementation. You can declare
more variables as register than the number of physical registers the implementation uses. In such a
case, the compiler treats the excess register variables as automatic.

Because the types that qualify for register class differ among implementations, invalid register
declarations are treated as automatic.

If you declare variables as register to optimize performance, declare them in decreasing order of
importance to make sure the compiler allocates a register to the most important variables.

Microsoft C Specific
The compiler ignores register declarations if you select the global register allocation optimization. You
can select global register allocation as follows:

Environment Selection
CL command
line

Specify either the /Oe or /Ox option.

pragma Use the optimize pragma with the e parameter.

 Evaluation Order

The C language does not guarantee the evaluation order of most expressions. Avoid writing constructs
that depend on evaluation within an expression to proceed in a particular manner. For example,

i = 0;
func(i++, i++);
.
.
.
func(int a, int b)
{

A compiler could evaluate this code fragment and pass 0 as a and 1 as b. It could also pass 1 as a and
0 as b and conform equally with the standards.

The C language does guarantee that an expression will be completely evaluated at any given
"sequence point." A sequence point is a point in the syntax of the language at which all side effects of
an expression or series of expressions have been completed.

These are the sequence points in the C language:

· The semicolon (;) statement separator
· The call to a function after the arguments have been evaluated
· The end of the first operand of one of the following:

· Logical AND (&&)
· Logical OR (||)
· Conditional (?)
· Comma separator (,) when used to separate statements or in expressions; the comma separator

is not a sequence point when it is used between variables in declaration statements or between
parameters in a function invocation

· The end of a full expression, such as:
· An initializer
· The expression in an expression statement (for example, any expression inside parentheses)
· The controlling expression of a while or do statement
· Any of the three expressions of a for statement
· The expression in a return statement

 Function and Macro Arguments with Side Effects

Run-time support functions can be implemented either as functions or as macros. Avoid including
expressions with side effects inside function invocations unless you are sure the function will not be
implemented as a macro. Here is an illustration of how an argument with side effects can cause
problems:

#define limit_number(x) ((x > 1000) ? 1000 : (x))

a = limit_number(a++);

If a is greater than 1000, it is incremented once. If a is less than or equal to 1000, it is incremented
twice, which is probably not the intended behavior.

A macro can be used safely with an argument that has side effects if it evaluates its parameter only
once. You can determine whether a macro is safe only by inspecting the code.

A common example of a run-time support function that is often implemented as a macro is toupper.
You will find your program's behavior confusing if you use the following code:

char c;

c = toupper(getc());

If toupper is implemented as a function, getc will be called only once, and its return value will be
translated to uppercase. However, if toupper is implemented as a macro, getc will be called once or
twice, depending on whether c is uppercase or lowercase. Consider the following macro example:

#define toupper(c) ((islower(c)) ? _toupper(c) : (c))

If you include the toupper macro in your code, the preprocessor expands it as follows:

/* What you wrote */
c = toupper(getc());

/* Macro expansion */
ch = (islower((getc())) ? _toupper(getc()) : (getc()));

The expansion of the macro shows that the argument to toupper will always be called twice: once to
determine if the character is lowercase and the next time to perform case translation (if necessary). In
the example, this double evaluation calls the getc function twice. Because getc is a function whose
side effect is to read a character from the standard input device, the example requests two characters
from standard input.

 Environment Differences

Many programs perform some file I/O. When writing these programs for portability, consider the
following:

· Do not hard code filenames or paths. Use constants you define either in a header file or at the
beginning of the program.

· Do not assume the use of any particular file system.
· Do not assume a particular display size (number of rows and columns).
· Do not assume that display attributes exist. Some environments do not support such attributes as

color, underlined text, blinking text, highlighted text, inverse text, protected text, or dim text.

 Microsoft C Byte Ordering

For all Windows programming, the processor runs in "little endian" mode. If b0 represents a less
significant byte than b1, the layout of a short will be b0 b1, and the layout of a long will be b0 b1 b2 b3. 
This is in contrast to "big endian" mode where a short would be b1 b0, and a long would be b3 b2 b1
b0.

 WINDOWS.H and STRICT Type Checking

The WINDOWS.H file contains a number of type definitions, macros, and structures that aid in writing
source code portable between versions of Microsoft Windows. Some of the WINDOWS.H features are
enabled when the STRICT symbol is defined on the command line or makefile. This guide explains
how these STRICT features affect the writing of correct code and what the advantages of using them
are.

This guide discusses the following major topics:

· New types and macros
· Using STRICT to improve type checking

 New Types and Macros

Porting 16-bit Code to 32-bit Windows introduced some new standard types for Windows
programming. Use of the old types, such as FAR PASCAL for declaring Windows procedures, may
work in existing code but is not guaranteed to work in all future versions of Windows. Therefore, you
should convert your code to use the new standards wherever appropriate.

 General Data Types

The following table summarizes the new standard types defined in WINDOWS.H. These types are
polymorphic (they can contain different kinds of data) and are useful generally throughout applications.
There are also other new types, handles, and function pointers that are introduced in following
sections.

Typedef Description
WINAPI Use in place of FAR PASCAL in function declarations. If

you are writing a DLL with exported function entry points,
you can use this for your own functions.

CALLBACK Use in place of FAR PASCAL in application callback
routines such as window procs and dialog procs.

LPCSTR Same as LPSTR, except used for read-only string pointers.
Defined as (const char FAR*).

UINT Portable unsigned integer type whose size is determined by
host environment (32 bits for Windows NT). Synonym for
unsigned int. Used in place of WORD except in the rare
cases where a 16-bit unsigned quantity is desired even on
32-bit platforms.

LRESULT Type used for declaration of Window procedure return
value.

WPARAM Type used for declaration of first general purpose Window
procedure parameter.

LPARAM Type used for declaration of second general purpose
Window procedure parameter.

LPVOID Generic pointer type, equivalent to (void *). Should be used
in preference to LPSTR.

 Utility Macros

WINDOWS.H provides a series of utility macros that are useful for working with the types listed in the
previous section. These macros, listed in the following table, help create and extract data from these
types. The FIELDOFFSET macro is particularly useful when you need to give the numeric offset of a
structure member as an argument.

Utility Description
MAKELPARAM(low, high) Combines two 16-bit quantities into an LPARAM.
MAKELRESULT(low, high) Combines two 16-bit quantities into an LRESULT.
MAKELP(sel, off) Combines a selector and an offset into a FAR

VOID* pointer. Useful only for Windows 3.x.
SELECTOROF(lp) Extracts the selector part of a far pointer. Returns a

UINT. Useful only for Windows 3.x.
OFFSETOF(lp) Extracts the offset part of a far pointer. Returns a

UINT. Useful only for Windows 3.x.
FIELDOFFSET(type, field) Calculates the offset of a member of a data

structure. The type is the type of structure, and field
is the name of the structure member or field.

 New Handle Types

In addition to the existing Windows handle types such as HWND, HDC, HBRUSH, and so on,
WINDOWS.H defines the following new handle types. They are particularly important if STRICT type
checking is enabled, but you can use these even if you do not define STRICT.

Handle Description
HINSTANCE Instance handle type
HMODULE Module handle type
HBITMAP Bitmap handle type
HLOCAL Local handle type
HGLOBAL Global handle type
HTASK Task handle type
HFILE File handle type
HRSRC Resource handle type
HGDIOBJ Generic GDI object handle type (except HMETAFILE)
HMETAFILE Metafile handle type
HDWP DeferWindowPos() handle
HACCEL Accelerator table handle
HDRVR Driver handle (Windows NT only)

 Using STRICT to Improve Type Checking

Defining the STRICT symbol enables features that require you to be more careful in declaring and
using types. This may sound like a burden, but it is actually an aid to writing more portable code. This
extra care will also reduce the time you spend debugging. Enabling STRICT redefines certain data
types so that the compiler won't permit assignment from one type to another without an explicit cast.
This is especially helpful with Windows code. Errors in passing data types are reported at compile time
instead of causing fatal errors at run time.

When STRICT is defined, WINDOWS.H type definitions change as follows:

· Specific handle types are defined so as to be mutually exclusive; for example, you won't be able to
pass an HWND where an HDC type argument is required. Without STRICT, all handles are defined
as integers, so the compiler doesn't prevent you from using one type of handle where another type
is expected.

· All callback function types (dialog procedures, window procedures, and hook procedures) are
defined with full prototypes. This prevents you from declaring callback functions with incorrect
parameter lists.

· Parameter and return value types that should use a generic pointer are declared correctly as
LPVOID instead of as LPSTR or other pointer type.

· The COMSTAT structure is now declared according to the ANSI standard.

 Enabling STRICT Type Checking

To enable STRICT type checking, just define the symbol name "STRICT". You can specify this
definition on the command line or in a makefile by giving /DSTRICT as a compiler option.

To define STRICT on a file-by-file basis (supported by C but not C++ as explained in the note in this
section), insert a #define statement before including WINDOWS.H in files where you want to enable
STRICT:

#define STRICT
#include WINDOWS.H

For best results, you should also set the warning level for error messages to at least /W3. This is good
policy with Windows applications in any case, because a coding practice that causes a warning (for
example, passing the wrong number of parameters) usually causes a fatal error at run time if it is not
corrected.

Note    If you are writing a C++ application, you don't have the option of applying STRICT to only some
of your source files. Because of the way C++ "type safe linking" works, mixing STRICT and non-
STRICT source files in your application can cause linking errors.

 Making Your Application STRICT Compliant

Some source code that in the past compiled successfully might produce error messages when you
enable STRICT type checking. The following sections describe the minimal requirements you need to
follow, where applicable, to make sure your code compiles when STRICT is enabled. There are other
steps not strictly required but recommended, especially if you want to produce portable code. These
are covered in Making Best Use of STRICT Type Checking.

 General Requirements

The principal requirement is that you must declare correct handle types and function pointers instead of
relying on more general types such as unsigned int and FARPROC. You cannot use one handle type
where another is expected. This requirement also means that you may have to change function
declarations and use more type casts.

For best results, the generic HANDLE type should not be used except where necessary. Consult New
Types and Macros for a list of new specific handle types.

 Using Function Pointers

Always declare function pointers with the proper function type (such as DLGPROC or WNDPROC)
rather than FARPROC. You'll need to cast function pointers to and from the proper function type when
using MakeProcInstance, FreeProcInstance, and other functions that take or return a FARPROC, as
shown in the following code:

BOOL CALLBACK DlgProc(HWND hwnd, UINT msg, WPARAM wParam,
 LPARAM lParam);

DLGPROC lpfnDlg;

lpfnDlg = (DLGPROC)MakeProcInstance(DlgProc, hinst);
...
FreeProcInstance((FARPROC)lpfnDlg);

 Declaring Functions Within Your Application

Make sure all application functions are declared. Placement of all function declarations in an include
file is highly recommended because you can more easily scan through your function declarations and
look for parameter and return types that should be changed.

If you use the /Zg compiler option to create header files for your functions, remember that you'll get
different results depending on whether or not you have enabled STRICT type checking. With STRICT
disabled, all handle types generate the same base type: unsigned short. With STRICT enabled, they
generate base types such as HWND __near * or HDC __near *. To avoid conflict, you need to either
recreate the header file each time you disable or enable STRICT, or else edit the header file to use the
types HWND, HDC, HANDLE, and so on, instead of the base types.

If you've copied any function declarations from WINDOWS.H into your source code, they may have
changed, and your local declaration may be out of date. Remove your local declaration.

 Functions That Require Casts

Some functions have generic return types or parameters. For example, a function like SendMessage
returns data that may be any number of types, depending on the context. When you see any of these
functions in your source code, make sure that you use the correct type cast and that it is as specific as
possible.

The following table summarizes these functions:

Function Comment
LocalLock Cast result to the proper kind of data pointer.
GlobalLock Cast result to the proper kind of data pointer.
GetWindowWord Cast result to appropriate data type.
GetWindowLong Cast result to appropriate data type
SetWindowWord Cast argument as it is passed to function.
SetWindowLong Cast argument as it is passed to function.
SendMessage Cast result to appropriate data type; cast to UINT before

casting to a handle type.
DefWindowProc See comment for SendMessage.
SendDlgItemMessage See comment for SendMessage.

When you call SendMessage, DefWindowProc, or SendDlgItemMessage, you should first cast the
result to type UINT. You need to take similar steps for any function that returns LRESULT or LONG,
where the result contains a handle. This is necessary for writing portable code because the size of a
handle is either 16 bits or 32 bits depending on the version of Windows. The (UINT) cast ensures
proper conversion. The following code shows an example in which SendMessage returns a handle to
a brush:

HBRUSH hbr;

hbr = (HBRUSH)(UINT)SendMessage(hwnd, WM_CTLCOLOR, ..., ...);

 The CreateWindow Function

The CreateWindow and CreateWindowEx hmenu parameter is sometimes used to pass an integer
control ID. In this case, you must cast this to an HMENU type:

HWND hwnd;
int id;

hwnd = CreateWindow("Button", "Ok", BS_PUSHBUTTON,
 x, y, cx, cy, hwndParent,
 (HMENU)id, // Cast required here
 hinst,
 NULL);

 Making Best Use of STRICT Type Checking

To get the most benefit from STRICT type checking, there are other guidelines you should follow in
addition to those in Making Your Application STRICT Compliant. Your code will be more portable in
future versions of Windows if you make the following changes:

Change To
HANDLE A specific handle such as HINSTANCE, HMODULE,

HGLOBAL, HLOCAL, and so on
WORD UINT, except where you want a 16-bit value even when the

platform is 32 bits
WORD WPARAM, where wParam is declared
LONG LPARAM or LRESULT as appropriate

Any time you need an integer data type, you should declare it as UINT except where a 16-bit value is
specifically required (as in a structure or parameter). For even if a variable never exceeds the range of
a 16-bit integer, it can be more efficiently handled by the processor if it is 32 bits.

The types WPARAM, LPARAM, LRESULT, and void * are "polymorphic data types": they hold
different kinds of data at different times, even when STRICT type checking is enabled. To get the
benefit of type checking, you should cast values of these types as soon as possible. Note that
message crackers (as well as the Microsoft Foundation Classes) automatically recast wParam and
lParam for you in a portable way.

Take special care to distinguish HMODULE and HINSTANCE types. Even with STRICT enabled, they
are defined as the same base type. Most kernel module management functions use HINSTANCE
types, but there are a few functions that return or accept only HMODULE types.

 Accessing the New COMSTAT Structure

The Windows 3.0 declaration of the COMSTAT structure is not compatible with ANSI standards.
WINDOWS.H now defines the COMSTAT structure to be compatible with ANSI compilers and so that
the /W4 option does not issue warnings.

To support backward compatibility of source code, WINDOWS.H does not use the new structure
definition unless the Windows version (as indicated by WINVER) is greater than 3.0 or if STRICT is
defined. When you enable STRICT, the presumption is that you are trying to write portable code.
Therefore, WINDOWS.H uses the new COMSTAT structure for all versions of Windows if STRICT is
enabled.

The new structure definition replaces the bit fields by flags accessing bits in a single field, named
status, as shown below. Each flag turns on a different bit.

Windows 3.0 field
name

Flag accessing the status field

fCtsHold CSTF_CTSHOLD
fDsrHold CSTF_DSRHOLD
fEof CSTF_EOF
fRlsdHold CSTF_RLSDHOLD
fTxim CSTF_TXIM
fXoffHold CSTF_XOFFHOLD
fXoffSent CSTF_XOFFSENT

If you have code that accesses any of these status fields, you need to change your code as
appropriate. For example, suppose you have the following code written for Windows 3.0:

if (comstat.fEof || fCondition)
comstat.fCtsHold = TRUE;
comstat.fTxim = FALSE;

This code should be replaced by code that access individual bits of the status field by using flags. Note
the use of bitwise operators.

if ((comstat.status & CSTF_EOF) || fCondition)
comstat.status |= CSTF_CTSHOLD;
comstat.status ~= CSTF_TXIM;

 Interpreting Error Messages Affected by STRICT

Enabling STRICT type checking may affect the kind of error messages you receive. With STRICT
enabled, all handle types as well as the types LRESULT, WPARAM, and LPARAM are defined as
pointer types. When you incorrectly use these types (for example, passing an int where an HDC is
expected), you will get error messages referring to errors in pointer indirection.

Another effect of STRICT is to require that FARPROC function pointers be recast as more specific
function pointer types such as DLGPROC. However, MakeProcInstance and FreeProcInstance still
work with the FARPROC type. If you fail to cast between FARPROC and the appropriate function
pointer type, the compiler will report an error in function parameter lists.

Note that using MakeProcInstance is useful for the sake of portability, if you want to use the same
source to compile for Windows 3.x. Under Win32, however, MakeProcInstance performs no operation,
but just returns the function name.

 Storage Class Attributes

This section describes extended attribute syntax, which simplifies and standardizes the Microsoft-
specific extensions to the Microsoft C and C++ languages. The storage class attributes that use
extended attribute syntax include thread, naked, dllimport, and dllexport.   

 Extended Attribute Syntax (Microsoft Specific)

The extended attribute syntax for specifying storage class information uses the declspec keyword,
which specifies that an instance of a given type is to be stored with a Microsoft-specific storage class
attribute (thread, naked, dllimport, or dllexport). Some examples of other storage class modifiers
include the static and extern keywords. However, these keywords are part of the ANSI specification of
the C and C++ languages, and as such are not covered by extended attribute syntax.

This is the extended attribute syntax for C:

Syntax

storage-class-specifier:
typedef
extern
static
auto
register
__declspec (extended-decl-modifier-list)

For C++, the syntax looks like this:

Syntax

decl-specifier:
storage-class-specifier
type-specifier
fct-specifier
friend
typedef
__declspec (extended-decl-modifier-list)

For C and C++, the extended-decl-modifier-list syntax looks like this:

Syntax

extended-decl-modifier-list:
extended-decl-modifier
extended-decl-modifier extended-decl-modifier-list

extended-decl-modifier:
thread
naked
dllimport
dllexport

White space separates the declaration modifier lists. Examples of the syntax appear in later sections.

The thread, naked, dllimport, and dllexport storage class attributes are a property only of the
declaration of the object or function to which they are applied. Unlike the __near and __far keywords,
which actually affect the type of object or function (in this case, 2- and 4-byte addresses), these
storage class attributes do not redefine the type attributes of the object itself. The thread attribute
affects data and objects only. The naked attribute affects functions only. The dllimport and dllexport
attributes affect functions, data, and objects.

The following statement declares an integer variable, tls_i, which is used to store thread-specific data.

__declspec(thread) int tls_i = 1;

To make your code more readable, you can control such declarations using macro definitions:

#define Thread __declspec(thread)
Thread int tls_i = 1;

 The Thread Attribute (32-bit Specific)

Thread Local Storage (TLS) is the mechanism by which each thread in a given multi-threaded process
allocates storage for thread-specific data. In standard multi-threaded programs, data is shared among
all threads of a given process, whereas thread-local storage is the mechanism for allocating per-thread
data. For a complete discussion of threads, see Processes and Threads.

The C and C++ languages include a new extended storage class attribute, thread. The thread
attribute must be used with the __declspec keyword to declare a thread variable. For example, the
following code declares an integer thread local variable and initializes it with a value:

__declspec(thread) int tls_i = 1;

Rules and Limitations
The following guidelines must be observed when you are declaring statically bound thread local objects
and variables.

· You can apply the thread attribute only to data declarations and definitions. It cannot be used on
function declarations or definitions. For example, the following code generates a compiler error:
#define Thread __declspec(thread)
Thread void func(); // Error

· You can specify the thread attribute only on data items with static storage duration. This includes
global data objects (both static and extern), local static objects, and static data members of C++
classes. You cannot declare automatic data objects with the thread attribute. For example, the
following code generates compiler errors:
#define Thread __declspec(thread)
void func1()
{

Thread int tls_i; // Error
}

int func2(Thread int tls_i) // Error
{

return tls_i;
}

· You must use the thread attribute for the declaration and the definition of a thread local object,
regardless of whether the declaration and definition occur in the same file or separate files. For
example, the following code generates an error:
#define Thread __declspec(thread)
extern int tls_i; // This generates an error, because the
int Thread tls_i; // declaration and the definition differ.

· You cannot use the thread attribute as a type modifier. For example, the following code generates a
compiler error:
char __declspec(thread) *ch; // Error

· C++ classes cannot use the thread attribute. However, you can instantiate C++ class objects with
the thread attribute. For example, the following code generates a compiler error:
#define Thread __declspec(thread)
class Thread C // Error: classes can't be declared Thread.
{

// Code
};
C CObject;

Because the declaration of C++ objects that use the thread attribute is permitted, these two
examples are semantically equivalent:
#define Thread __declspec(thread)
Thread class B
{
// Code
} BObject; // Okay--BObject declared thread local.

class B
{
// Code
}
Thread B BObject; // Okay--BObject declared thread local.

· Because C++ objects with constructors and destructors, as well as objects that use initialization
semantics, can be allocated as thread local, an associated initialization routine must be called to
initialize the object. In this example, the constructor initializes the thread local object:
class tlsClass
{

private:
int x;

public:
tlsClass() { x = 1; } ;
~tlsClass();

}

__declspec(thread) tlsClass tlsObject;
extern int func();
__declspec(thread) int y = func();

· The address of a thread local object is not considered constant, and any expression involving such
an address is not considered a constant expression. In C and C++, this means that you cannot use
the address of a thread local variable as an initializer for an object or pointer. For example, the
compiler flags the following code as an error:
#define Thread __declspec(thread)
Thread int tls_i;
int *p = &tls_i; //Error

· Standard C permits initialization of an object or variable with an expression involving a reference to
itself, but only for objects of non-static extent. Although C++ normally permits such dynamic
initialization of an object with an expression involving a reference to itself, this type of initialization is
not permitted with thread local objects. For example:
#define Thread __declspec(thread)
Thread int tls_i = tls_i; // C and C++ error
int j = j; // Okay in
C++; C error
Thread int tls_i = sizeof(tls_i) // Okay in C and C++

Note that a sizeof expression that includes the object being initialized does not constitute a
reference to itself, and is allowed in C and C++.

 The Naked Attribute (32-bit Specific)

For functions declared with the naked attribute, the compiler generates code without prolog and epilog
code. You can use this feature to write your own prolog/epilog code sequences using inline assembly
code. Naked functions are particularly useful in writing virtual device drivers and interrupt handlers.

Because the naked attribute is only relevant to the definition of a function and is not a type modifier,
naked functions use the extended attribute syntax, described previously. For example, this code
defines a function with the naked attribute:

__declspec(naked) int func(formal_parameters)
{

// Function body
}

Or, alternatively:

#define Naked __declspec(naked)
Naked int func(formal_parameters)
{

// Function body
}

The naked modifier affects only the nature of the compiler's code generation for the function's prolog
and epilog sequences. It does not affect the code that is generated for calling such functions. Thus, the
naked attribute is not considered part of the function's type, and function pointers cannot have the
naked attribute. Furthermore, the naked attribute cannot be applied to a data definition. For example,
the following code samples generate errors:

__declspec(naked) int i; // Error--naked attribute not
// permitted on data
// declarations.

The naked attribute is relevant only to the definition of the function and cannot be specified in the
function's prototype. The following declaration generates a compiler error:

__declspec(naked) int func(); // Error--naked attribute
// not permitted on

function
// declarations.

Rules and Limitations
· The return statement is not permitted in a naked function. However, you can return an int by moving

the return value into the eax register before the ret instruction.
· Structured exception handling constructs are not permitted in a naked function because the

constructs must unwind across the stack frame.
· Any use of the setjmp run-time function is not permitted in a naked function because it too must

unwind across the stack frame. However, use of the longjmp run-time function is permitted.
· Use of the _alloca function is not permitted in a naked function.
· To ensure that no initialization code for local variables appears before the prolog sequence,

initialized local variables are not permitted at function scope. In particular, the declaration of C++
objects is not permitted at function scope. There can, however, be initialized data in a nested scope.

· Frame pointer optimization (the /Oy compiler option) is not recommended, but it is automatically
suppressed for a naked function.

 Considerations for Writing Prolog/Epilog Code

Before writing your own prolog and epilog code sequences, it is important to understand how the stack
frame is laid out, and some differences in stack frame layout between 16-bit and 32-bit targets. It is
also useful to know how to use the _LOCAL_SIZE symbol. These topics are discussed in the following
sections.

 Stack Frame Layout

A few minor differences exist between 16- and 32-bit stack frame layout. This example shows the
standard prolog code that might appear in a 32-bit function:

push ebp ; Save ebp
mov ebp, esp ; Set stack frame pointer
sub esp, localbytes ; Allocate space for locals
push registers ; Save registers

The localbytesvariable represents the number of bytes needed on the stack for local variables, and the
registers variable is a placeholder that represents the list of registers to be saved on the stack. After
pushing the registers, you can place any other appropriate data on the stack. The following is the
corresponding epilog code:

pop registers ; Restore registers
mov esp, ebp ; Restore stack pointer
pop ebp ; Restore ebp
ret ; Return from function

The stack always grows down (from high to low memory addresses). The base pointer (ebp) points to
the pushed value of ebp. The locals area begins at ebp-2. To access local variables, calculate an offset
from ebp by subtracting the appropriate value from ebp.

The only change in these code sequences for 16-bit targets is that the register names do not begin with
an e. For 16-bit targets, the register names in the examples above would be bp and sp.

 __LOCAL_SIZE

The compiler provides a symbol, __LOCAL_SIZE, for use in the inline assembly block of function
prolog code. This symbol is used to allocate space for local variables on the stack frame in custom
prolog code.

The compiler determines the value of __LOCAL_SIZE. Its value is the total number of bytes of all user-
defined local variables and compiler-generated temporary variables. __LOCAL_SIZE can be used only
as an immediate operand; it cannot be used in an expression. You must not change or redefine the
value of this symbol. For example:

mov eax, __LOCAL_SIZE ;Immediate operand--Okay
mov eax, __LOCAL_SIZE + 4 ;Error
mov eax, [ebp - __LOCAL_SIZE] ;Error

The following example of a naked function containing custom prolog and epilog sequences uses
__LOCAL_SIZE symbol in the prolog sequence:

__declspec (naked) func()
{

int i;
int j;

__asm /* prolog */
{
push ebp
mov ebp, esp
sub esp, __LOCAL_SIZE
}

/* Function body */

__asm /* epilog */
{
mov esp, ebp
pop ebp
ret
}

}

 The Dllexport and Dllimport Attributes (32-bit Specific)

The dllexport and dllimport storage class modifiers export and import functions, data, and objects to
and from a DLL. These modifiers, or attributes, explicitly define the DLL's interface to its client, which
can be the executable file or another DLL. Declaring functions as dllexport eliminates the need for a
module-definition (.DEF) file, at least with respect to the specification of exported functions. Note that
dllexport replaces the __export keyword.

The declaration of dllexport and dllimport uses extended attribute syntax:

#define DllImport__declspec(dllimport)
#define DllExport__declspec(dllexport)

DllExport void func();
DllExport int i = 10;
DllImport int j;
DllExport int n;

 Definitions and Declarations

The DLL interface refers to all items (functions and data) that are known to be exported by some
program in the system, that is, all items that are declared as dllimport or dllexport. All declarations
included in the DLL interface must specify either the dllimport or dllexport attribute. However, the
definition can specify only the dllexport attribute. For example, the following function definition
generates a compiler error:

#define DllImport__declspec(dllimport)
#define DllExport__declspec(dllexport)

DllImport int func() // Error; dllimport prohibited on definition.
{

return 1;
}

This code also generates an error:

DllImport int i = 10; // Error; this is a definition.

However, this is correct syntax:

DllExport int i = 10; // Okay; this is an export definition.
The use of dllexport implies a definition, while dllimport implies a declaration. You must use the
extern keyword with dllexport to force a declaration; otherwise, a definition is implied. Thus, the
following examples are correct:

extern DllImport int k; // These are both correct and imply a
DllImport int j; // declaration.

The following examples help to further clarify the above:

static DllImport int l; // Error; not declared extern.
void func()
{

static DllImport int s; // Error; not declared extern.
DllImport int m; // Okay; this is a declaration.
DllExport int n; // Error; implies external

// definition in local scope.

extern DllImport int i; // Okay; this is a declaration.
extern DllExport int k; // Okay; extern implies

// declaration.

DllExport int x = 5; // Error; implies external
// definition in local scope.

}

 Defining Inline Functions with Dllexport and Dllimport

You can define as inline a function with the dllexport attribute. In this case, the function is always
instantiated and exported, whether or not any module in the program references the function. The
function is presumed to be imported by another program.

You can also define as inline a function declared with the dllimport attribute. In this case, the function
can be expanded (subject to /Ob compiler switch specifications), but never instantiated. In particular, if
the address of an inline imported function is taken, the address of the function residing in the DLL is
returned. This behavior is the same as taking the address of a non-inline imported function.

These rules apply to inline functions whose definitions appear within a class definition. In addition,
static local data and strings in inline functions maintain the same identities between the DLL and client
as they would in a single program (that is, an executable file without a DLL interface).

Exercise care when providing imported inline functions. For example, if you update the DLL, don't
assume that the client will use the changed version of the DLL. To ensure that you are loading the
proper version of the DLL, rebuild the DLL's client as well.

 General Rules and Limitations

· If you declare a function or object without the dllimport or dllexport attribute, the function or object
is not considered part of the DLL interface. Therefore, the definition of the function or object must be
present in that module or in another module of the same program. To make the function or object
part of the DLL interface, you must declare the definition of the function or object in the other module
as dllexport. Otherwise, a linker error is generated.
If you declare a function or object with the dllexport attribute, its definition must appear in some
module of the same program. Otherwise, a linker error is generated.

· If a single module in your program contains both dllimport and dllexport declarations for the same
function or object, the dllexport attribute takes precedence over the dllimport attribute. However, a
compiler warning is generated. For example:

DllImport int i;
DllExport int i; // Warning; inconsistent, but

// dllexport takes precedence.
· In C, if you initialize a globally declared pointer with the address of a data object declared with the

dllimport attribute, a compiler error is generated. Similarly, you cannot initialize a static local
function pointer with the address of a function declared with the dllimport attribute, or initialize a
static local data pointer with the address of a data object declared with the dllimport attribute. The
C++ compiler does not enforce this restriction, because C++ supports dynamic initialization of local
and global static objects. For example, the following code generates errors when compiled with the
C compiler, but not with the C++ compiler:

DllImport void func1(void);
DllImport int i;

int *pi = &i; //
Error in C

static void (*pf)(void) = &func1; // Error in C
void func2()
{

static int *pi = &i; // Error in
C

static void (*pf)(void) = &func1; // Error in C
}

However, because a program that includes the dllexport attribute in the declaration of an object
must provide the definition for that object somewhere in the program, you can initialize a global or
local static function pointer with the address of a dllexport function. Similarly, you can initialize a
global or local static data pointer with the address of a dllexport data object. For example, the
following code does not generate errors in C or C++:

DllExport void func1(void);
DllExport int i;

int *pi = &i; //
Okay

static void (*pf)(void) = &func1; // Okay

void func2()
{

static int *pi = &i; // Okay
static void (*pf)(void) = &func1; // Okay

}

 C++ Specific Rules and Limitations

You can declare C++ classes with the dllimport or dllexport attribute. These forms imply that the
entire class is imported or exported. Classes exported in this manner are referred to as exportable
classes.

The following example defines an exportable class. All its member functions and static data are
exported:

class DllExport C
{

int i;
virtual int func(void)
{ return 1; }

};

Note that explicit use of the dllimport and dllexport attributes on members of an exportable class is
prohibited.

 Dllexport Classes

When you declare a class dllexport, all its member functions and static data members are exported.
You must provide the definitions of all such members in the same program. Otherwise, a linker error is
generated. The one exception to this rule applies to pure virtual functions, for which you need not
provide explicit definitions. However, because a destructor for an abstract class is always called by the
destructor for the base class, pure virtual destructors must always provide a definition. Note that these
rules are the same for non-exportable classes.

If you export data of class type or functions that return classes, be sure to export the class.

 Dllimport Classes

When you declare a class dllimport, all its member functions and static data members are imported.
Unlike the behavior of dllimport and dllexport on non-class types, static data members cannot specify
a definition in the same program in which a dllimport class is defined.

 Inheritance and Exportable Classes

All base classes of an exportable class must be exportable. If not, a compiler warning is generated.
Moreover, all accessible members that are also classes must be exportable. This rule permits a
dllexport class to inherit from a dllimport class, and a dllimport class to inherit from a dllexport class
(though the latter is not recommended). As a rule, everything that is accessible to the DLL's client
(according to C++ access rules) should be part of the exportable interface. This includes private data
members referenced in inline functions.

 Selective Member Import/Export

Because member functions and static data within a class implicitly have external linkage, you can
declare them with the dllimport or dllexport attributes, unless the entire class is exported. If the entire
class is imported or exported, the explicit declaration of member functions and data as dllimport or
dllexport is prohibited. If you declare a static data member within a class definition as dllexport, a
definition must occur somewhere within the same program (as with non-class external linkage).

Similarly, you can declare member functions with the dllimport or dllexport attributes. In this case, you
must provide a dllexport definition somewhere within the same program.

It is worthwhile to note several important points regarding selective member import and export:

· Selective member import/export is best used for providing a version of the exported class interface
that is more restrictive; that is, one for which you can design a DLL that exposes fewer public and
private features than the language would otherwise allow. It is also useful for fine tuning the
exportable interface: when you know that the client, by definition, is unable to access some private
data, you need not export the entire class.

· If you export one virtual function in a class, you must export all of them, or at least provide versions
that the client can use directly.
If you have a class in which you are using selective member import/export with virtual functions, the
functions must be in the exportable interface or defined inline (visible to the client).

· If you define a member as dllexport but do not include it in the class definition, a compiler error is
generated. You must define the member in the class header.

· Although the definition of class members as dllimport or dllexport is permitted, you cannot override
the interface specified in the class definition.

· If you define a member function in a place other than the body of the class definition in which you
declared it, a warning is generated if the function is defined as dllexport or dllimport (if this
definition differs from that specified in the class declaration).

 Shared Header Files

A good way to ensure that the DLL and its client agree on the interface to a DLL is to use the same
header files for building the DLL and the client. In this case, all header files should use dllimport since
dllexport overrides dllimport in the case of definition.

 Legal Notice

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

Portions of this document contain information pertaining to prerelease code that is not at the level of
performance and compatibility of the final, generally available product offering. This information may be
substantially modified prior to the first commercial shipment. Microsoft is not obligated to make this or
any later version of the software product commercially available. APIs that constitute prerelease code
are marked as "Preliminary Windows 95" or "Preliminary Windows NT" (as applicable). If your
application is using any of these APIs, it must be marked as a BETA application. For further details and
restrictions, see Sections 1 and 3 of the License Agreement.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1985-1995 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Windows, Win32, and Win32s are registered
trademarks; and Visual C++ and Windows NT are trademarks of Microsoft Corporation. OS/2 is a
registered trademark licensed to Microsoft Corporation.

Adaptec is a registered trademark of Adaptec, Inc.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc.

Asymetrix and ToolBook are registered trademarks of Asymetrix Corporation.

CompuServe is a registered trademark of CompuServe, Inc.

Sound Blaster and Sound Blaster Pro are trademarks of Creative Technology, Ltd.

Alpha AXP and DEC are trademarks of Digital Equipment Corporation.

Kodak is a registered trademark of Eastman Kodak Company.

PANOSE is a trademark of ElseWare Corporation.

Future Domain is a registered trademark of Future Domain Corporation.

Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.

AT, IBM, Micro Channel, OS/2, and XGA are registered trademarks, and PC/XT and RISC
System/6000 are trademarks of International Business Machines Corporation.

Intel and Pentium are registered trademarks, and i386 and i486 are trademarks of Intel Corporation.

Video Seven is a trademark of Headland Technology, Inc.

Lotus is a registered trademark of Lotus Development Corporation.

MIPS is a registered trademark of MIPS Computer Systems, Inc.

Arial, Monotype, and Times New Roman are registered trademarks of The Monotype Corporation.

Motorola is a registered trademark of Motorola, Inc.

NCR is a registered trademark of NCR Corporation.

Nokia is a registered trademark of Nokia Corporation.

Novell and NetWare are registered trademarks of Novell, Inc.

Olivetti is a registered trademark of Ing. C. Olivetti.

PostScript is a registered trademark of Adobe Systems, Inc.

R4000 is a trademark of MIPS Computer Systems, Inc.

Roland is a registered trademark of Roland Corporation.

SCSI is a registered trademark of Security Control Systems, Inc.

Epson is a registered trademark of Seiko Epson Corporation, Inc.

Silicon Graphics is a registered trademark and OpenGL is a trademark of Silicon Graphics, Inc.

Stacker is a registered trademark of STAC Electronics.

Tandy is a registered trademark of Tandy Corporation.

Unicode is a registered trademark of Unicode, Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

VAX is a trademark of Digital Equipment Corporation

Yamaha is a registered trademark of Yamaha Corporation of America.

Paintbrush is a trademark of Wordstar Atlanta Technology Center.

Microsoft Win32 Developer’s Reference
You have requested information from the Microsoft Win32 Developer’s Reference. One or more of
these help files is not available on your system.

